
The Essential Guide to
Automated Test Generation

for Embedded Systems

W H I T E P A P E R

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

2

Most development teams will agree that despite the effort and costs of unit testing, it’s essential to
embedded software development. Unit testing helps developers truly understand the code they're
developing and provides a solid foundation to a verification and validation regimen needed to satisfy
safety and security goals for a product. Building on this foundation of unit tests enables teams to
accelerate agile development while mitigating risk of defects slipping into later stages of the pipeline.

WHY AUTOMATED TEST GENERATION?
Typically, development teams do an inadequate amount of unit testing. Alternatively, if they're
required to achieve high levels of code coverage, for example, they spend a large amount of money
and time to achieve it.

The constraints on the amount of testing are due to multiple factors such as the pressure and time it
takes to deliver increased functionality, and the complexity and time-consuming nature of creating
valuable unit tests.

Figure 1:
Continuous integration
pipeline for a solid modern
development foundation.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

3

Common reasons developers cite that limit the efficiency of unit testing as a core development
practice include the following.

	» 	It's difficult to understand, initialize, and/or isolate the dependencies of the unit under test.

	» 	Determining what to validate and defining appropriate assertions is time consuming and often
requires intelligent guess work.

	» 	There's a lot of manual coding involved, often even more than was required to implement a
specific feature or enhancement.

	» 	It’s just not that interesting. Developers don’t want to feel like testers. They want to spend time
delivering more functionality.

Unit test automation tools universally support some sort of test framework, which provides the
harness infrastructure to execute units in isolation while satisfying dependencies via stubs. This
includes the automated generation of test harnesses and the executable components needed for
host and target-based testing.

Test data generation and management, however, is the biggest challenge in unit testing and test
generation. Test cases need to cover a gamut of validation roles such as ensuring functional
requirements, detecting unpredictable behavior, and assuring security, and safety requirements. All
while satisfying test coverage criteria.

Automated test generation decreases the inefficiencies of unit testing by removing the difficulties
with initialization, isolation, and managing dependencies. It also removes much of the manual coding
required while helping to manage the test data needed to drive verification and validation.

UNIT TESTING IN EMBEDDED SYSTEMS
Software verification and validation is
an inherent part of embedded software
development, and testing is a key way to
demonstrate correct software behavior. Unit
testing is the verification of module design. It
ensures that each software unit does what it's
required to do.

In addition, safety and security requirements
may require that software units don’t behave
in unexpected ways and are not susceptible to
manipulation with unexpected data inputs.

In terms of the classic V model of development,
unit test execution is a validation practice to
ensure module design is correct. Many safety-

specific development standards have guidelines
for what needs to be tested for unit testing.
For example, ISO 61502 and related standards,
have specific guidelines for testing in accordance
with safety integrity level where requirements-
based testing and interface testing are highly
recommended for all levels. Fault injection and
resource usage tests are recommended at lower
integrity levels and highly recommended at
the highest SIL (Safety Integrity Levels) levels.
Similarly, the method of driving test cases is also
specified with recommended practices.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

4

TEST CASE DRIVERS

Analysis of Requirements

Every requirement drives—at minimum—a single
unit test case. Although test automation tools
don't generate tests directly from requirements,
they must support two-way traceability from
requirements to code and requirements to test.
And maintain requirements, tests, and code
coverage information.

Generation & Analysis of Equivalence Classes

Test cases must ensure that units behave in
the same manner for a range of inputs not
just cherry picked inputs for each unit. Test
automation tools must support test case
generation using data sources to efficiently use a
wide range of input values.

AUTOMATED TEST EXECUTION
Test automation provides large benefits to embedded software. Moving away from test suites that
require a lot of manual intervention means that testing can be done quicker, easier, and more often.

Offloading this manual testing effort frees up time for better test coverage and other safety and
quality objectives. An important requirement for automated test suite execution is being able to run
these tests on both host and target environments.

TARGET-BASED TESTING FOR EMBEDDED SYSTEMS

Automating testing for embedded software is more challenging due to the complexity of initiating
and observing tests on target hardware. Not to mention the limited access to target hardware that
software teams have.

Software test automation is essential to make embedded testing workable on a continuous basis
from host development system to target system. Testing embedded software is particularly time
consuming. Automating the regression test suite provides considerable time and cost savings. In
addition, test results and code coverage data collection from the target system are essential for
validation and standards compliance.

Traceability between test cases, test results, source code, and requirements must be recorded and
maintained. So, data collection is critical in test execution.

Analysis of Boundary Values

Automatically generated test cases, such as
heuristic values, boundary values, employ
data sources to use a wide range of input
values in tests.

Error Guessing

This method uses the function stubs mechanism
to inject fault conditions into tested code
flow analysis results and can be used to write
additional tests.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

5

Figure 2:
A high-level view of
deploying, executing, and
observing tests from host
to embedded target. STRUCTURAL CODE COVERAGE

Collecting and analyzing code coverage metrics is an important aspect of safety-critical software
development. Code coverage measures the completion of test cases and executed tests. It
provides evidence that validation is complete, at least as specified by the software design. It also
identifies dead code. This is code that can logically never be reached. It demonstrates the absence
of unintended behavior. Code that isn’t covered by any test is a liability because its behavior and
functionality are unknown.

The amount and extent of code coverage depends on the safety integrity level. The higher the
integrity level, the higher the rigor used, and inevitably the number and complexity of test cases.
Regardless of the level of coverage required, automated test case generation can increase test
coverage over time.

Advanced unit test automation tools should measure these code coverage metrics. In addition, it’s
necessary that this data collection works on host and target testing and accumulates test coverage
history over time. This code coverage history can span unit, integration, and system testing to ensure
coverage is complete and traceable at all levels of testing.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

6

TYPES OF AUTOMATED TEST CASE GENERATION
For practical purposes, automated tools should generate test cases in existing well-known formats
like CppUnit. By default, one test suite per source/header file makes sense, but tools should support
one test suite per function or one test suite per source file if needed.

Another important consideration is the automatic stub definitions to replace "dangerous" functions,
which includes system I/O routines such as rmdir(), remove(), rename(), and so on. In addition, stubs
can be automatically generated for missing function and variable definitions. User-defined stubs can
be added as needed.

REQUIREMENTS-BASED TEST CASE GENERATION

Although test automation tools can’t derive requirements tests from documentation, they can help
make the creation of test cases, stubs, and mocks easier and more efficient. In addition, automation
greatly improves test case data management and tool support for parameterized tests also reduces
manual effort.

Particularly important is traceability from requirements to code to tests and test results. Manually
managing traceability is nearly impossible and automation makes two traceability a reality.

While requirements are being decomposed, traceability must be maintained throughout the phases
of development as customer requirements decompose into system, high-level, and low-level
requirements. The coding or implementation phase realizes the low-level requirements. Consider
the typical V diagram of software.

Figure 3:
The V-model of system
development with
traceability overlay.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

7

Each phase drives the subsequent phase. In turn, the work items or refined requirements in each phase
must satisfy the requirements from the previous phase. Architectural requirements that have been
created or decomposed from system design must satisfy the system design/requirements, and so on.

Traceability proves that each phase is satisfying the requirements of each subsequent phase.
Developers write code that implements or realizes each requirement and for safety-critical
applications, links for traceability to test cases and down to the code are established. Therefore, if a
customer requirement changes or is removed, the team knows what it impacts down the line, all the
way to the code and tests that validate the requirements.

Industry standards like DO-178B/C, ISO 26262, IEC 62304, IEC 61508, EN 50128, and others require
the construction of a traceability matrix for identification of any gaps in the design and verification of
requirements. This helps achieve the ultimate goal of building the right product. More than that, it’s
to ensure the product has the quality, safety, and security to ensure it remains the right product.

Figure 4:
Parasoft traceability
matrix of Jama
requirements to tests
and code.

CODE COVERAGE-BASED TEST CASE GENERATION

The creation of productive unit tests has always been a challenge. Functional safety standards
compliance demands high-quality software, which drives a need for test suites that affect and
produce high code coverage statistics. Teams require unit test cases that help them achieve 100%
code coverage. This is easier said than done. Analyzing branches in the code and trying to find
reasons why certain code sections are not covered continues to steal cycles from development teams.

https://www.parasoft.com/blog/requirements-management-and-the-traceability-matrix/

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

8

Unit test automation tools can be used to fill in the coverage gaps in test suites. For example,
advanced static code analysis (data and control flow analysis) is used to find values for the input
parameters required to execute specific lines of uncovered code.

It’s also valuable if you have automated tools that not only measure code coverage but also keep
track of how much modified code is being covered by tests, because this can provide visibility into
whether enough tests are being written along with changes in production code. See the following
example code coverage report.

Figure 5:
Aggregation of code
coverage from various
testing methods in
Parasoft DTP.

Using Static Analysis to Drive Coverage-Based Test Cases

In complex code, there are always those elusive code statements of which it's exceedingly difficult
to obtain coverage. It’s likely there are multiple input values with various permutations and possible
paths that make it mind twisting and time consuming to decipher. But only one combination can get
you the coverage you need. Combining test automation and static analysis makes it easy to obtain
coverage of those difficult to reach lines of code. An example of test preconditions calculated with
static analysis is shown in the Coverage Advisor.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

9

Figure 6:
Code coverage analysis
feedback from Parasoft
C/C++test.

Defect Test Case Generation

Another class of test are those created to induce an error condition in the unit under test. The input
parameters in these cases are often out of bounds and are just at the boundary conditions for data
types, such as using the highest 32-bit positive and negative integers for test data. Other examples
are fuzz testing where these boundary conditions are mixed with random data designed to create an
error condition or trigger a security vulnerability.

These test cases validate nonfunctional requirements since they fall outside the scope of product
requirements, but are essential for determining performance, security, safety, reliability, and other
product qualities. Automation is essential since these tests can be numerous (fuzz testing) and rely on
repeated execution (performance testing) to help discover quality issues. Test case generation helps
reduce the manual effort needed to create these test suites.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

10

REGRESSION TESTING
As part of most software development
processes, regression testing is done after
changes are made to software. These tests
determine if the new changes had an impact
on the existing operation of the software.
Managing and executing regression tests are
a large part of the effort and cost in testing.
Even with automated test generation, test
execution, gathering results, and re-running
tests is very time consuming. Regression testing
encompasses test case maintenance, code
coverage improvements and traceability.

Regression tests are necessary, but they only
indicate that recent code changes have not
caused tests to fail. There's no assurance that
these changes will work. In addition, the nature
of the changes that motivate the need to do
regression testing can go beyond the current
application and include changes in hardware,
operating system, and operating environment.

In fact, all previously created test cases
may need to be executed to ensure that no
regressions exist and that a new dependable
software version release is constructed. This is
critical because each new software system or
subsystem release is built or developed upon.
If you don't have a solid foundation the whole
thing can collapse.

To prevent this, it’s important to create
regression testing baselines that are an organized
collection of tests and will automatically verify
all outcomes. These tests are run automatically
on a regular basis to verify whether code
modifications change or break the functionality
captured in the regression tests. If any changes
are introduced, these test cases will fail to alert
the team to the problem. During subsequent
tests, Parasoft C++test will report tasks if it
detects changes to the behavior captured in
the initial test.

HOW TO DECIDE WHAT TO TEST

The key challenge with regression testing is
determining what parts of an application to
test. It's common to default to executing all
regression tests when there’s doubt on what
impacts recent code changes have had—the all
or nothing approach.

For large software projects, this becomes
a huge undertaking and drags down the
productivity of the team. This inability to
focus testing hinders much of the benefits of
iterative and continuous processes, potentially
exacerbated in embedded software where test
targets are a limited resource.

A couple of tasks are required here.

1.	 Identify which tests need to be re-executed.

2.	 Focus the testing efforts (unit testing,
automated functional testing, and manual
testing) on validating the features and related
code impacted by the most recent changes.

Test Impact Analysis

Test Impact Analysis (TIA) uses data collected
during test runs and changes in code between
builds to determine which files have changed
and which specific tests touched those files.
Parasoft’s analysis engine can analyze the delta
between two builds and identify the subset of
regression tests that need to be executed. It
also understands the dependencies on the units
modified to determine what ripple effect the
changes have made on other units.

Focus on the Risk

Due to the complexity of today’s codebases,
every code change, however innocuous,
can subtly impact application stability and
ultimately “break the system.” These unintended
consequences are impossible to discover
through manual inspection, so testing is critical

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

11

to mitigate the risk they represent. Unless it’s
understood what needs to be re-rested, efficient
testing practice can’t be achieved. If there is
too much testing in each sprint or iteration, the
efficiency brought by test automation is reduced.
Testing too little is not an option.

The best approach is to identify which tests
need to be re-executed and focus the testing
efforts (unit testing, automated functional
testing, and manual testing) on validating the
features and related code that are impacted by
the most recent changes. This is discovered with

Figure 7:
Parasoft DTP report on
Test Impact Analysis.

TIA and planning testing based on a data-driven
approach called change-based testing.

TIA needs a repository of already-completed
tests that are already executed against each
build, either as part of a fully automated test
process (such as a CI-driven build step) or while
testing the new functionality. This analysis
provides insight into where in the code the
changes occurred, how the existing tests
correlate to those changes, and where testing
resources need to focus. Following is an example
of a TIA.

From here, the regression test plan is augmented
to address failed and incomplete test cases
with the highest priority and using the re-
test recommendations to focus scheduling
of additional automated runs and prioritizing
manual testing efforts.

Testing is a major bottleneck for embedded
software development with too many defects
being identified at the end of the release cycle
due to not enough or misdirected testing. To
yield the best results, focus testing efforts on the
impact of the changes being made to unlock the
efficiency that test automation delivers.

https://alm.parasoft.com/laser-focus-your-testing-with-change-based-testing

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

12

BENEFITS OF AUTOMATED TEST GENERATION
Automated test case generation removes the human effort, errors, and tedium from unit testing and
benefits embedded software development in several ways.

	» 	Reducing labor costs.

	» 	Shortening time to market.

	» 	Satisfying compliance to standards.

	» 	Increasing quality, security, and safety.

REDUCING LABOR COSTS

Unit test automation by itself is a productivity
booster for embedded software development
because manual testing on target hardware is
time consuming. It's also difficult to ascertain
code coverage and requirements traceability.
Automated test case generation further
increases developer and test productivity
and eliminates manual effort of creating and
maintaining unit test.

In conjunction with smart test execution, there's
a high ROI for the automation investment. In
addition, as teams and products mature, these
benefits grow over time as the foundation of
test assets grows, team expertise increases and
product quality, security, and safety improve.

SHORTENING TIME TO MARKET

The productivity improvements from test
automation save money and decrease the time
for a software product to converge on the final
shipping product. Increased coverage, more
frequent and thorough testing, and completed
requirements traceability arrive sooner than
more ad hoc techniques. Time to market further
improves when combining these practices with
Agile development, CI/CD, and DevSecOps
pipelines. Moreover, customers report higher
quality products and discover fewer bugs.

SATISFYING COMPLIANCE TO STANDARDS

Compliance to industry standards for safety
and security requires use of automation to be
feasible. Whether it's coding, development, or
testing, automation is required for documenting
the process, capturing traceability, and proving
adequate verification and validation.

For safety-critical devices, validation is crucial as
the burden is on the developer to prove they’ve
met more than just product requirements but
also ensured the level of safety and security
expected by the industry. Unit test generation
is a valuable tool for increasing coverage,
expanding testing to discover possible error
conditions, and fulfilling requirements validation.

INCREASING QUALITY, SECURITY, & SAFETY

Improved code coverage and better testing
for security, performance, and reliability are
all achieved with more test cases aided by
automatic test case generation. This improved
test regimen is made possible through
automation with higher productivity and more
testing in the same development schedule.
The end result is improved safety, security, and
quality. Software organizations generally mature
their process over time. These improvements
span more than just one product and the benefits
continue throughout product life cycles, which
are significantly longer for embedded devices.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

13

HOW A MEDICAL DEVICES LEADER USES AUTOMATED TEST
GENERATION FOR SAFE, HIGH-QUALITY DELIVERY
Smiths Medical is a leading global manufacturer of specialty medical devices that provides innovative
and lifesaving solutions for the world’s healthcare markets. The company specializes in infusion
therapy, vascular access, and vital care. Its products are found in hospital, emergency, home, and
specialty care environments and are used during critical and intensive care, surgery, post-operative
care, and for support in managing chronic illness.

Delivering safe, high-quality software for their medical devices is imperative. For that reason, Smiths
Medical builds its safety-critical medical devices with a rigorous engineering process where software
testing plays a critical role for verification and validation.

Developing medical device software is difficult due the safety and security requirements. Software
verification and validation plays an important role in proving the intended functionality has been
implemented and safety and security have been incorporated into the products.

Test automation is an important foundation of Smiths Medical’s testing approach. Previous attempts
at adopting tools weren’t fully successful. The development team was looking for a solution to support
their entire testing effort with a new approach and mindset of test-driven development (TDD).

THE SOLUTION: EVOLVING TO TEST DRIVEN
DEVELOPMENT

Smiths Medical recognized that they needed
to go further than just adopting unit test
automation. Their plan was to move the team
to test-driven development where design/
refactoring and testing are tightly interwoven
and rely heavily on automated test generation.
Tests are written as a description of the
expected unit functionality and code is written
and factored to make sure tests pass.

Although the move to TDD can incur some
upfront costs, there are significant benefits
downstream in terms of lower defect rates,
including:

	» 	A fast feedback loop for developers.

	» 	Less time spent debugging.

	» 	Building solid code with clean interfaces.

An important part of making the move to TDD
was test automation and tools that support
this process. Test automation, including
test generation made tests more valuable in

terms of their relationship and traceability to
requirements, code coverage, work items, builds,
and other artifacts.

The benefits of moving to automated test
generation meant reduced test maintenance costs
and lower costs for medical device pre-market
approval. Flexible support for target and host-
based testing with comprehensive code coverage
was essential for their product development.

THE RESULTS: INCREASED CODE COVERAGE,
BETTER TEST STABILITY, DECREASED TEST
FAILURES

Smiths Medical has evolved their testing to
test-driven development and seen numerous
positive results from their adoption of automated
test generation for their safety-critical software
development, including:

Improved test stability. Unit tests are code. Just
like any code, they’re prone to mistakes and bugs
and require maintenance. Smiths Medical was
struggling with test failures that required too
much debugging time to figure out if the unit
under test was broken or if it was the test itself.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

14

Once they moved to TDD and automation with
Parasoft C/C++test, their test stability increased
dramatically. Test maintenance was easier and
test failures decreased in general.

Better code coverage and decreased code
complexity. Increasing code coverage was
critical for Smiths Medical due to the safety
aspect of their products. They needed to show
due diligence in testing their software and
demonstrating appropriate code coverage is
part of that. To this end, they used Parasoft C/
C++test to instrument the code and capture
their code coverage, and Parasoft DTP to track
the code coverage and code complexity metrics.
In both cases, the trends have been improving
over time. Code coverage is now over 70%.
Code complexity decreased below 15 based on
McCabe’s cyclomatic complexity measurements.

Figure 8:
Smiths Medical test
results trend over time.
Total tests are increasing
but the ratio of failures is
decreasing.

In fact, it was now easier than ever to increase
coverage because of automated test generation,
execution, and results collection.

Open to closed defect ratio trending to zero.
Smiths Medical observed that the number
of tests was increasing due to efforts in
obtaining better code coverage, which was
directly attributed to their new processes and
automation. However, instead of test failures
going up in tandem with the increased tests, they
were dropping. Also, the ratio of open to closed
defects was trending towards zero. This meant
that test case quality was improving in terms of
clarity and properly set expected test results.
There were more tests and more tests passed.
There was also a reduction in manual work
needed to fix defects or the tests themselves.

The Essential Guide to Automated Test Generation for Embedded Systems
Whitepaper

15

SUMMARY
Testing is essential to embedded software development. It fosters true understanding of the code
being developed and provides a solid foundation to a verification and validation regimen needed to
satisfy safety and security goals for a product.

The constraints on testing productivity are due to multiple factors such as the pressure and time it
takes to deliver increased functionality, and the complexity and time-consuming nature of creating
valuable tests.

Test data generation and management is by far the biggest challenge in unit testing and test
generation. Test cases are particularly important in safety-critical software development because
they must ensure functional requirements and test for unpredictable behavior, security, and safety
requirements. All while satisfying test coverage criteria.

Automated test generation decreases the inefficiencies of unit testing by removing the difficulties
with initialization and isolation and managing dependencies. It also removes much of the manual
coding required while helping to manage the test data needed to drive verification and validation.
This improves quality, safety, and security. It also reduces test time, costs, and time to market.

TAKE THE NEXT STEP
Learn more about automating unit test generation for your embedded software development team.
Talk to one of our experts today.

ABOUT PARASOFT

Parasoft helps organizations continuously deliver quality software with its market-proven, integrated
suite of automated software testing tools. Supporting the embedded, enterprise, and IoT markets,
Parasoft’s technologies reduce the time, effort, and cost of delivering secure, reliable, and compliant
software by integrating everything from deep code analysis and unit testing to web UI and API
testing, plus service virtualization and complete code coverage, into the delivery pipeline. Bringing
all this together, Parasoft’s award winning reporting and analytics dashboard delivers a centralized
view of quality enabling organizations to deliver with confidence and succeed in today’s most
strategic ecosystems and development initiatives — security, safety-critical, Agile, DevOps, and
continuous testing.

https://www.parasoft.com/contact/
https://www.parasoft.com/

