
Medical Device
Software Development

Following FDA Guidelines for Software Validation

T E C H N I C A L W H I T E P A P E R

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

2

OVERVIEW
As a means of providing guidance to medical device software makers, the FDA
issued the General Principles of Software Validation. This document outlines
principles for validating medical device software, as well as the software used
to design, develop, or manufacture medical devices, that the FDA considers
acceptable. Organizations that produce software within these categories
are therefore subject to FDA regulation and must comply with the General
Principles of Software Validation.

Devices categorized as class II and III, as well as some class I devices, are subject
to design controls.

Of these, the following types of software must be validated for FDA approval:

 » Software used as a component, part, or accessory of a medical device.

 » Software that is itself a medical device (like blood establishment software).

 » Software used in the production of a device (such as programmable logic
controllers in manufacturing equipment).

 » Software used in implementation of the device manufacturer’s quality system
(for example, software that records and maintains the device history record).

In this paper, we identify software development challenges that medical device
makers face when attempting to integrate the principles outlined by the FDA,
and describe how Parasoft’s automated defect prevention solutions help
organizations overcome the challenges of an integrated SDLC approach. For
clear compliance efforts moving forward, we provide a point-to-point index of
FDA principles and the Parasoft capabilities that support them.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

3

As an effective way to gain approval, the FDA recommends
that medical device software development teams take
a software development lifecycle (SDLC) approach that
integrates risk management strategies with principles for
software validation. An integrated SDLC merges validation
and verification activities, including defect prevention
practices such as unit testing, peer code reviews, static
analysis, manual testing, and regression testing, throughout
the SDLC. The result of such an approach is an emphasis
on planning, verification, testing, traceability, and
configuration management.

Developing software for medical devices that complies with the FDA’s Quality
System regulation is a challenging endeavor that’s as much a business issue as it
is an engineering feat

BURDENS OF THE LEAST BURDENSOME
APPROACH
The FDA guidance does not prescribe specific practices, tools, coding methods
or any other technical activity. The FDA instead prescribes the concept of the
Least Burdensome Approach. In this approach, organizations determine, and
strictly adhere to, their self-defined validation and verification processes.

Development activities and outcomes must be clearly defined, documented,
verified, and validated against the organization’s process. The goal of this
approach is to give medical device makers the flexibility to determine how to
best ensure public safety.

But for some organizations, the burden associated with
regulatory compliance has actually been compounded. Not
only must the organization validate and verify the software
with extensive testing, they must also develop the basis
on which the software would be considered safe for
use. Furthermore, organizations must prove that they’ve
followed their self-defined processes.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

4

In terms of the extensive planning and testing requirements, the following
examples are some of the challenges software engineers must overcome (FDA
21 CFR):

 » The software validation process cannot be completed without an established
software requirements specification, which specifies the intended use.
Results must not only verify that the specifications are met, but they must
be reproduced consistently. Testing methods like regression testing can be
implemented to meet the requirement.

 » Validation must be established and re-established for even small changes.
This means that validation activities, including static analysis, unit testing,
code review, and the like, must be repeated if the code has changed.
Furthermore, as software continues to become more and more complex,
tests that validate the changes should be conducted in scale with the
application to ensure that no other part of the system is affected.

 » Changes to the requirements deemed significantly different enough from the
originally registered design may require the product to be re-registered per
FDA Section 501(K).

 » There are no “FDA certified” tools or methods. No person, organization, or
tool can claim any form of supposed FDA certification, but any software used
to automate any part of the device process or any part of the quality system
must be validated. You must be able to run any tools used to assist in the
verification and validation efforts on a control code base and confirm that
the results are consistent, which may affect your time to market.

The FDA has established grounds for approval in a way that effectively puts the
responsibility of ensuring quality and public safety back to the device makers.
But device makers are often dealing with a bigger challenge: bridging the gap
between business goals and the development process.

LACK OF SOFTWARE DEVELOPMENT POLICY
Software engineers often either don’t know what’s expected or do not
understand the business objective behind the guidelines driving their products.
They are expected to write code that meets the requirements, without
necessarily understanding why requirements have been established in the
first place. The best way to overcome these challenges, while satisfying the
FDA’s requirements for medical device software development, is to drive the
development process in a platform based on policy-driven development.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

5

Policy-driven development involves:

 » Clearly defining expectations and documenting them in understandable
policies.

 » Training engineers on the business objectives driving those policies.

 » Monitoring policy adherence in an automated, unobtrusive way.

Integrating these principles into the development process gives businesses
the ability to accurately and objectively measure productivity and application
quality. In addition to reducing risk, the result is lower cost over the total
software development lifecycle from build to support.

Adopting a policy-driven development process is crucial for achieving the
following goals:

 » Ensuring that engineers don’t make trade-offs that compromise reliability or
performance.

 » Ensuring that engineers build security into the application, safeguarding it
from potential attacks.

 » Preventing defects that could result in costly recalls, litigation, or a damaged
market position.

 » Accurately and consistently applying quality processes.

 » Gaining the traceability and auditability required to ensure continued policy
compliance.

Software engineers are continually making business decisions. Every line of
code, test conducted (or left undone), and guideline or standard followed (or
ignored) have profound effects on the business. With public safety, potential
litigation, market position, and other consequences on the line, it behooves
software development teams and people in traditional business management
positions to come together on policy, and implement the strategy into their
software development lifecycle.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

6

PARASOFT’S SUPPORT FOR FDA PRINCIPLES OF
SOFTWARE VALIDATION
Parasoft supports the FDA’s vision of an integrated SDLC for C, C++, Java, and
.NET by continuously and consistently applying software testing practices
specified in the General Principles of Software Validation. Parasoft’s software-
development management platform designed for medical device software
development is pre-configured with processes and best practices described in
the FDA guidelines, enabling organizations to implement an automated defect-
prevention strategy.

Leveraging policy-driven development, Parasoft provides an environment that
drives productivity and software quality.

Sections 1, 2, and 3 of the FDA’s guidelines set the purpose, scope, and context
for software validation. Since these sections focus on identifying terms rather
than outlining expectations, we will use Section 4 (Principles of Software
Validation) and Section 5 (Activities and Tasks) to highlight how Parasoft delivers
end-to-end solutions for the medical device software industry.

Software testing is one of many verification activities intended to confirm that
software development output meets its input requirements. However, quality
software cannot be delivered by testing alone. Quality software is delivered
consistently via a solid, repeatable process, which requires an integrated system
that assists with defining requirements, ensuring good coding practices, and
testing effectively. This process needs to be visible, measurable, and — most
importantly — repeatable. The following table matches FDA principles with
Parasoft features and functionalities that help organizations achieve compliance.

PARASOFT’S
SOLUTIONS FOR
MEDICAL DEVICE
SOFTWARE
DEVELOPMENT
Parasoft’s solutions for medical
device software development
feature the following
technologies:

 » Code analysis configurations
that enforce coding best
practices according to CWE,
OWASP, MISRA, and other
sources

 » Integrated defect prevention,
validation, and verification

 » A continuous, policy-driven
compliance process with real-
time visibility

 » Correlation of all key artifacts,
including tests, code and
test coverage, requirements,
source code, analysis
violations, metrics analysis,
project tasks, and so on for
comprehensive requirements
traceability

Figure 1:
FDA Medical Device Software
Compliance Productivity
Dashboard

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

7

4.2 DEFECT PREVENTION

Software quality assurance needs to focus on preventing
the introduction of defects into the software development
process rather than trying to “test quality into” the software
code after it is written.

Software testing is limited in its ability to surface all latent
defects in code.

Software testing by itself is not sufficient to establish
confidence that the software is fit for its intended use.

Parasoft Support

 » The industry’s most comprehensive automated defect
prevention system.

 » A proven automated defect prevention system that can be
implemented into any software development environment

 » Technologies that automate defect prevention practices
to ensure their consistent and comprehensive application.

 » An automated infrastructure that drives the defect
prevention process to ensure that it remains on track and
does not disrupt the team’s workflow.

 » A system that monitors adherence to defect prevention
policies.

 » Capabilities include:

 » Quality Policy Management

 » Static Code Analysis

 » Pattern-Based

 » Flow-Based

 » Metrics-Based

 » Automated Peer Code Review

 » Contextual Peer Code Review

 » Unit Testing Framework

 » Code Coverage Analysis

Parasoft Support

 » A system for mapping requirements to development tasks
and monitoring the implementation and validation of each
requirement.

 » An open API and out-of-the-box configurations for the
most popular resource management and bug management
systems and tools like Excel, Word and MS Project,

 » Requirements testing highlights which requirements need
to be tested.

 » Requirements traceability correlates requirements to
iterations, tasks, code, tests, builds, and artifacts.

 » Graphical reporting of requirement status as indicated by
developers.

4.1 REQUIREMENTS

A documented software requirements specification provides
a baseline for both validation and verification.

The software validation process cannot be completed
without an established software requirements specification.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

8

Parasoft Support

 » Plans are expressed as customizable templates that define
common software development and validation plans.

 » A system for mapping quality plan requirements to
development tasks and monitoring the implementation
and validation of each requirement.

 » Services that ensure the validation plan is clearly defined
and enforceable.

 » Centralized definition and management of organization-
level and team-level policies for implementing the
validation plan.

4.3 TIME AND EFFORT

Preparation of software validation should begin early.
For example, during design and development planning
and design input.

4.4 SOFTWARE LIFE CYCLE

Software validation takes place within the environment of
an established software life cycle. The software life cycle
contains software engineering tasks and documentation
necessary to support the software validation effort. In
addition, the software life cycle contains specific verification
and validation tasks that are appropriate for the intended use
of the software.

4.5 PLANS

The software validation process is defined and controlled
through the use of a plan. The software validation plan
defines “what” is to be accomplished through the software
validation effort. Software validation plans are a significant
quality system tool. Software validation plans specify areas
such as scope, approach, resources, schedules and the types
and extent of activities, tasks, and work items.

Parasoft Support

 » Preconfigured FDA templates.

 » A central system that documents and defines
requirements, expected tasks, timelines and outcomes —
as well as manages by exception to ensure that the project
is meeting expectations.

 » A continuous, end-to-end quality process that ensures
defect prevention and detection tasks are not only
deployed across every stage of the SDLC, but also
ingrained into the team’s workflow.

 » A system that answers in real-time:

 » Will I be on time?

 » Will I be on budget?

 » Will I have the expected functionality?

 » Will it work?

Parasoft Support

 » Software development management platform integrates
SDLC into the broader development infrastructure;
flexible process/workflow definition tool allows for a
visible and repeatable SDLC.

 » Process-based implementation drives manual and
automated validation tasks across the SDLC, ensuring
consistency and traceability.

 » Services that integrate and automate the SDLC to ensure
that quality software can be produced consistently and
efficiently.

 » Services that improve development productivity and
form the foundation for a repeatable, sustainable quality
process.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

9

Parasoft Support

 » Continuous regression testing, which applies a broad
range of validation methods to immediately alert the team
when modifications impact application behavior.

 » Change-based testing, which helps teams identify and
execute only the test cases directly related to the most
recent source code modifications.

 » Requirements traceability correlates requirements to
iterations, tasks, code, tests, builds, and artifacts.

Parasoft Support

 » Automated assessment of high-risk code using industry-
standard metrics.

 » Identification of specific pieces of code that exceed
industrystandard or customized complexity metrics
thresholds.

 » Coverage analyzer, including statement, branch, path, and
MC/DC coverage, helps users gauge test suite efficacy
and completeness.

 » Archived reports and trend graphs document validation
efforts and quality improvements.

4.6 PROCEDURES

The software validation process is executed through the use
of procedures. These procedures establish “how” to conduct
the software validation effort.

The procedures should identify the specific actions or
sequence of actions that must be taken to complete
individual validation activities, tasks, and work items.

4.7 SOFTWARE VALIDATION AFTER A CHANGE

Due to the complexity of software, a seemingly
small local change may have a significant global
system impact.

Whenever software is changed, a validation analysis should
be conducted not just for validation of the individual change,
but also to determine the extent and impact of that change on
the entire software system.

4.8 VALIDATION COVERAGE

Validation coverage should be based on the software’s
complexity and safety risk - not on firm size or resource
constraints. The selection of validation activities, tasks, and
work items should be commensurate with the complexity of
the software design and the risk associated with the use of
the software for the specified intended use.

Validation documentation should be sufficient to
demonstrate that all software validation plans and
procedures have been completed successfully.

Parasoft Support

 » Policy defines procedures and the Parasoft software
development management system automatically
orchestrates the all tasks in the appropriate sequence
with complete traceability. In this way, checklist items are
converted into an executable process.

 » Automated application of quality policies across the
SDLC.

 » Monitorable quality gates and thresholds throughout the
SDLC.

 » Workflow optimization to ensure that tasks to support
quality policies can become a sustainable part of the
team’s existing workflow.

 » Preconfigured FDA templates.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

10

Parasoft Support

 » Policy defines procedures and the Parasoft software
development management system automatically
orchestrates the all tasks in the appropriate sequence
with complete traceability. In this way, checklist items are
converted into an executable process.

 » Automated application of quality policies across the
SDLC.

 » Monitorable quality gates and thresholds throughout the
SDLC.

 » Workflow optimization to ensure that tasks to support
quality policies can become a sustainable part of the
team’s existing workflow.

 » Preconfigured FDA templates.

Parasoft Support

 » A policy-driven, flexible, repeatable, and traceable
validation process that can span distributed environments
and include both automated and manual tasks.

 » The ability to define a test suite that starts verifying
software on the “host” development environment
then reuse that same test suite to validate software
functionality in other environments — on simulators,
target devices, and other platforms.

 » The visibility and consistency needed to reduce the
risks of outsourcing and geographically-distributed
development.

 » An automated framework that manages software
verification methods to ensure that all software
development activities meet expectations.

 » Support for defect resolution, not just defect prevention
and detection. Each issue detected is prioritized,
automatically correlated to the developer who introduced
it, then distributed to his or her IDE with direct links to
the problematic code. Eventually, developers start writing
compliant code as a matter of habit. Moreover, through
integration with the development infrastructure, results
are correlated with requirements, bugs, and source code
changes — converting data into actionable information.

4.9 INDEPENDENCE OF REVIEW

Self-validation is extremely difficult. When possible, an
independent evaluation is always better, especially for higher
risk applications.

4.10 FLEXIBILITY AND RESPONSIBILITY

Software is designed, developed, validated, and regulated in
a wide spectrum of environments, and for a wide variety of
devices with varying levels of risk.

Software validation activities and tasks may be dispersed,
occurring at different locations and being conducted by
different organizations.

However, regardless of the distribution of tasks, contractual
relations, source of components, or the development
environment, the device manufacturer or specification
developer retains ultimate responsibility for ensuring that the
software is validated.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

11

Parasoft Support

 » A policy-based approach that defines the organization’s
expectations for quality across each of these SDLC
phases, ingrains practices for measuring policy
compliance into the team’s workflow across the SDLC,
and automatically monitors policy compliance for visibility
and traceability.

 » A centralized and enforceable policy that not only
establishes the organization’s expectations, but also
keeps the team on track towards achieving those
expectations — providing a framework for producing
predictable outcomes.

 » The ability to define a truly comprehensive policy that
not only enforces coding requirements through static
analysis, but also addresses dynamic testing requirements
regarding unit, integration, and system-level testing,
coverage analysis, and regression testing.

 » Preconfigured FDA templates.

Parasoft Support

 » Plans are expressed as an interoperable business process.
Preconfigured, customizable templates define common
software quality plans.

 » A system for mapping quality plan requirements to
development tasks and monitoring the implementation
and validation of each requirement.

 » Services that ensure the validation plan is clearly defined
and enforceable.

 » Centralized definition and management of organization-
level and team-level policies for implementing the quality
plan.

5.1 SOFTWARE LIFE CYCLE ACTIVITIES

Activities in a typical software life cycle model include the
following:

 » Quality Planning

 » System Requirements Definition

 » Detailed Software Requirements Specification

 » Software Design Specification

 » Construction or Coding

 » Testing

 » Installation

 » Operation and Support

 » Maintenance

 » Retirement

Verification, testing, and other tasks that support software
validation occur during each of these activities. A life cycle
model organizes these software development activities in
various ways and provides a framework for monitoring and
controlling the software development project.

5.2.1 QUALITY PLANNING

Design and development planning should culminate in
a plan that identifies necessary tasks, procedures for
anomaly reporting and resolution, necessary resources, and
management review requirements, including formal design
reviews.

A software life cycle model and associated activities should
be identified, as well as those tasks necessary for each
software life cycle activity.

Parasoft Support

 » A system for mapping quality plan requirements to
development tasks and monitoring the implementation
and validation of each requirement.

 » Traceability through requirements-based testing,
which links test cases, the requirements defined in the
specification, and the related source code — providing
real- time visibility into which requirements are actually
working as expected, and which still require testing.

 » Workflow automation for design document reviews.

 » Automated orchestration of approval/sign-off tasks in the
appropriate sequence, and with complete traceability.

5.2.2 REQUIREMENTS

The software requirements specification document should
contain a written definition of the software functions.

A software requirements traceability analysis should be
conducted to trace software requirements to (and from)
system requirements and to risk analysis results.

In addition to any other analyses and documentation used
to verify software requirements, a formal design review
is recommended to confirm that requirements are fully
specified and appropriate before extensive software design
efforts begin.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

12

Parasoft Support

 » Policies specify design best practices that prevent
common design pitfalls; ensure that the design is correct,
consistent, complete, accurate, and testable; and help
teams satisfy critical design attributes such as usability,
performance, efficiency, scalability, or modularity.

 » Workflow automation for design document reviews.

 » Automated orchestration of approval/sign-off tasks in the
appropriate sequence, and with complete traceability.

5.2.3 DESIGN

In the design process, the software requirements
specification is translated into a logical and physical
representation of the software to be implemented. The
software design specification is a description of what the
software should do and how it should do it.

At the end of the software design activity, a Formal Design
Review should be conducted to verify that the design is
correct, consistent, complete, accurate, and testable, before
moving to implement the design.

Parasoft Support

 » Pattern-based static analysis ensures that the code meets
uniform expectations around reliability, performance,
security, and maintainability. Includes preconfigured
templates for FDA.

 » Data flow static analysis detects complex runtime errors
without requiring test cases or application execution.

 » Metrics analysis not only calculates metrics but also
identifies specific pieces of code that exceed industry
standard or customized metrics thresholds.

 » Peer code inspection process automation automates and
manages the peer code review workflow — including
preparation, notification, and tracking — and reduces
overhead by enabling code review on the desktop.

 » Traceability through requirements-based testing,
which links test cases, the requirements defined in the
specification, and the related source code — providing
real- time visibility into which requirements are actually
working as expected, and which still require testing.

5.2.4 CONSTRUCTION OR CODING

Source code should be evaluated to verify its compliance
with specified coding guidelines. Such guidelines should
include coding conventions regarding clarity, style,
complexity management, and commenting.

Source code evaluations are often implemented as code
inspections and code walkthroughs. Such static analyses
provide a very effective means to detect errors before
execution of the code.

A source code traceability analysis is an important tool to
verify that all code is linked to established specifications
and established test procedures. A source code traceability
analysis should be conducted and documented to verify that:

 » Each element of the software design specification has
been implemented in code.

 » Modules and functions implemented in code can be
traced back to an element in the software design
specification and to the risk analysis.

 » Tests for modules and functions can be traced back to an
element in the software design specification and to the
risk analysis.

 » Tests for modules and functions can be traced to source
code for the same modules and functions.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

13

Parasoft Support

 » Automated execution of regression test suite that
captures the code’s current behavior as a baseline. Daily
execution of this test suite ensures that the team is
immediately alerted if code modifications impact or break
existing functionality.

 » A continuous regression testing process which ensures
that the impacts of code modifications are identified and
addressed daily, and the regression test suite stays in
synch with the evolving application.

 » A framework that supports the rapid addition of new
tests that verify the correctness of the implemented
changes.

5.2.7 MAINTENANCE AND SOFTWARE CHANGES

When changes are made to a software system, either during
initial development or during post release maintenance,
sufficient regression analysis and testing should be
conducted to demonstrate that portions of the software not
involved in the change were not adversely impacted. This is
in addition to testing that evaluates the correctness of the
implemented changes.

Parasoft Support

 » A framework that allows developers to start testing each
unit as soon as it is completed, and that supports the
rapid addition of user-defined tests that verify software
correctness and functionality.

 » After examining the source code to determine how to test
it, a wide variety of white-box test cases are automatically
generated to check code robustness, exposing potential
reliability problems.

 » Automated identification and refactoring of unused code,
duplicate code, and dead code.

 » Coverage analyzer, including statement, branch, path, and
MC/DC coverage, helps users gauge test suite efficacy
and completeness. Coverage is defined as code coverage
obtained by actually executing code with test cases — not
simulated coverage.

 » Automated integration-level and system-level testing.

 » Runtime error detection efficiently identifies defects.only
manifested at runtime.

 » Memory error detection identifies difficult-to-track
programming and memory-access errors, as well as
potential defects and memory usage inefficiencies.

5.2.5 TESTING BY THE SOFTWARE DEVELOPER

Test plans and test cases should be created as early in the
software development process as feasible.

Once the prerequisite tasks like code inspection have been
successfully completed, software testing begins. It starts with
unit level testing and concludes with system level testing.

Codebased testing is also known as structural testing
or white-box testing. It identifies test cases based on
knowledge obtained from the source code, detailed design
specification, and other development documents.

Structural testing can identify “dead” code that is never
executed when the program is run.

The level of structural testing can be evaluated using metrics
that are designed to show what percentage of the software
structure has been evaluated during structural testing. These
metrics are typically referred to as coverage and are a measure
of completeness with respect to test selection criteria.

Parasoft Support

 » Step-by-step capture of user acceptance test processes.
Each manual step is captured so the complete manual
sequence can be easily retrieved, reviewed, and repeated
— adding objective traceability to the process.

5.2.6 USER SITE TESTING

User site testing should follow a pre-defined written plan
with a formal summary of testing and a record of formal
acceptance. Documented evidence of all testing procedures,
test input data, and test results should be retained.

Medical Device Software Development
Following FDA Guidelines for Software Validation

Technical Whitepaper

14

TAKE THE NEXT STEP
Learn more about improving software quality with medical device software
development testing solutions. Talk to one of our experts today.

ABOUT PARASOFT

Parasoft helps organizations continuously deliver quality software with its
market-proven, integrated suite of automated software testing tools. Supporting
the embedded, enterprise, and IoT markets, Parasoft’s technologies reduce
the time, effort, and cost of delivering secure, reliable, and compliant software
by integrating everything from deep code analysis and unit testing to web
UI and API testing, plus service virtualization and complete code coverage,
into the delivery pipeline. Bringing all this together, Parasoft’s award winning
reporting and analytics dashboard delivers a centralized view of quality enabling
organizations to deliver with confidence and succeed in today’s most strategic
ecosystems and development initiatives — cybersecure, safety-critical, agile,
DevOps, and continuous testing.

https://www.parasoft.com/industries/embedded/medical-devices/
https://www.parasoft.com/contact/
https://www.parasoft.com/

