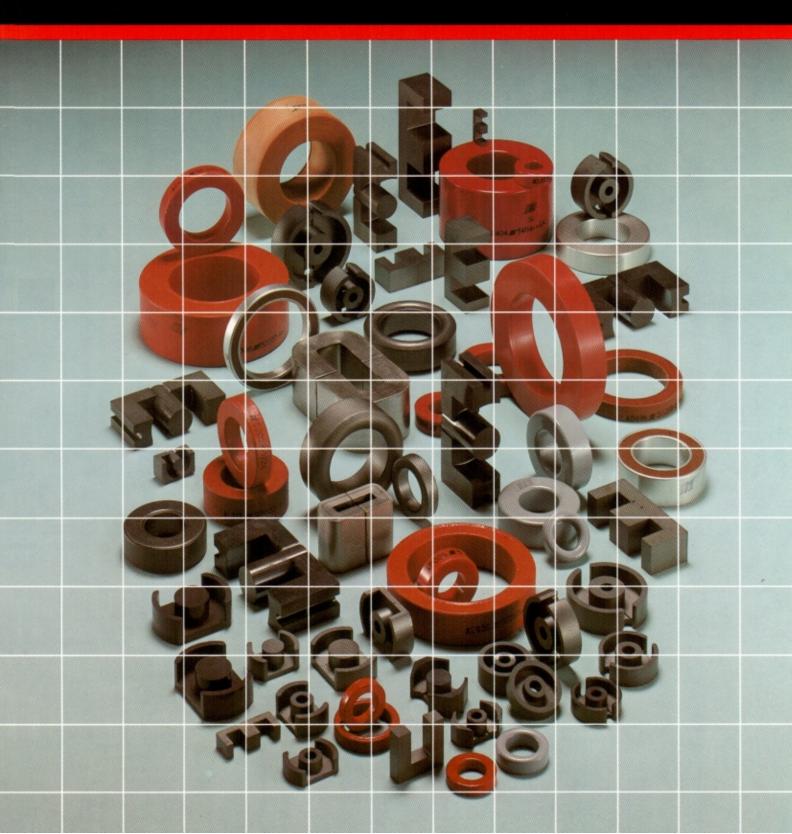
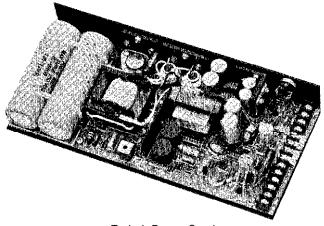
Magnetic Cores for Switching Power Supplies

Magnetics offers one-stop shopping for magnetic cores in a multitude of materials, sizes, and shapes.


Complete in-process capability, from raw materials to finished parts, assures you a wide selection of quality cores that meet the exacting specifications of components used in switching power supplies: (1) ferrites, tape cores, and nickel cut cores for the output transformer; (2) ferrites, powder cores and cut

cores for the regulator inductor; (3) ferrites and powder cores for filters; and (4) miniature tape cores and saturable cores for the drive transformer.

This brochure discusses the advantages and disadvantages of the various types of cores used in switching power supplies. A number of design articles are referenced in addition to a listing of other useful Magnetics literature.


For the most complete line of magnetic cores, come to Magnetics.

In recent years, much has been written on the subject of switched mode power supplies discussing their advantages, design considerations and circuitry. With improvements in semiconductors and other circuit components, higher frequencies are being utilized, sizes are being reduced, and efficiencies are increasing.

Magnetic cores of various types play a key role in many of the components used in switched mode power supplies. Core materials and geometries are a basic design consideration. Depending on the circuit requirements, degree of sophistication, manufacturing techniques, assembly equipment available and costs, the designer has a wide array of magnetic cores at his disposal. The list includes:

Typical Power Supply Photo courtesy of RO Associates

ferrite cores, permalloy powder cores, Kool Mu® powder cores, 50 Ni/50 Fe powder cores, tape wound cores, cut cores, bobbin cores, laminations and powdered iron cores.

Making the right choice from this list is a real design challenge. A realistic and honest comparison of properties of available alternatives is suggested. Magnetics offers the widest selection from the above materials, narrowing your core choice and design assistance to a single source.

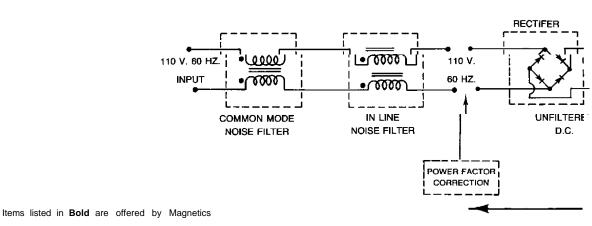

Figure 1 shows a typical block diagram of a switched mode power supply. Under each subassembly are listed the various types of magnetic cores and materials that can be used in these circuits. The design requirements for cores in each of the subassemblies are listed in Table 1.

Table 1

Power Supply Component	Desired Core Characteristics
EMI Filter Common mode filter In-line filter	High permeability High saturation (B max)
Power Factor Correction Inductor	High DC Bias Low losses
Output transformer High frequency (20KHz & above)	Low losses
Low frequency (10 KHz and below)	High saturation (B max)
Mag Amp	High Br/Bm Low losses
Regulating inductor	High saturation (B max)

BLOCK DIAGRAM OF TYPICAL EMI FILTER

FIGURE 1

Common Mode

- 1. Ferrite toroids
- 2. Ferrite shapes (Ungapped)

In Line

- 1. Molypermalloy powder cores
- 2. 50 Ni- 50 Fe powder cores
- 3. Gapped ferrites
- 4. Powdered iron
- 5. Si-Fe laminations
- 6. KOOL Mµ powder cores

Power factor correction inductor

- 1. KOOL Mµ powder cores
- 2. Molypermalloy powder cores
- 3. 50 Ni- 50 Fe powder
- 4. Gapped ferrites
- 5. Powdered iron

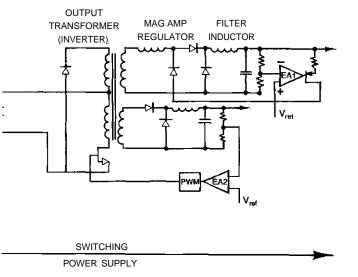
Output transformer

- 1 Ferrites
 - (a) pot cores (b) shapes

 - (c) toroids
- 2. Ni-Fe tape wound cores
- 3. Amorphous tape wound cores
- 4. Cut Cores
 - (a) Ni-Fe
- (b) Amorphous 5 Ni-Fe laminations
- MAGNETICS BUTLER, PA

The correct choice of core materials will optimize power supply performance. In metal ferromagnetic materials, eddy current losses increase rapidly with frequency and are controlled by using thin laminations, thin-gauge strips of material, or by powdering and insulating metallic particles used to produce the core. Practical and theoretical factors limit the effectiveness of this approach. Ferrite materials have one paramount advantage - very high electrical resistivity, which means that eddy current losses are much lower than metals. As operating frequencies increase, ferrites become a practical and useful magnetic material since ferromagnetic types cannot be made progressively thinner or smaller to reduce eddy current losses to acceptable levels.

While ferrites do provide low core losses at higher frequencies, they have, as previously mentioned, relatively low saturation levels; therefore, for a given flux density, a larger core cross-section is needed. This added core area increases copper losses (AC and DC); however, at 20 KHz and higher, the reduction in core loss obtained when using a ferrite is


greater that the subsequent increase in copper losses. Additionally, fewer turns are needed at higher frequencies to support a given voltage; hence, the copper losses are kept down.

For the lower range of power and switcher frequencies, nickel-alloy ferromagnetic cores have relatively high electrical resistivity; laminated, or strip wound cores fabricated from thin strip, can be effective up to the 20 KHz range (or higher if designed and operated at low flux density levels).

Tables 2 and 3 summarize the various types of cores with respect to materials and shape characteristics. These tables provide a basis for magnetic core selection. The correct choice of core depends on circuit requirements such as frequency, power level, circuit configuration, and environmental conditions. Our applications engineering staff will be happy to assist you in choosing the optimum core for your application.

The advantages and disadvantages of the various types of core materials and geometries in transformers, inductors, and filters are reviewed in Tables 4, 5, and 6.

BLOCK DIAGRAM OF TYPICAL SWITCHING POWER SUPPLY AND REGULATOR

Mag amp regulator 1. Ni-Fe tape

wound cores
2. Cobalt-base
amorphous tape
wound cores

Square loop ferrite toroids

Filter inductor

Molypermalloy powder cores

2. 50 Ni- 50 Fe powder cores

3. Gapped ferrites

4. Powdered iron

5. Cut Cores

6. Si-Fe laminations

7. KOOL M μ powder cores

Table 2— Core Material Considerations

	Flux Density	Initial Perm.	Frequency* Range	Max. op. Temp.	Core Losses	Core Cost	Winding Cost	Temp. Stability	Mounting Flexibility
Ferrite Toroids MAGNETICS [™]				·				-	
J Mat'l	4300	5000	to > MHz	100°C	lowest	low	high	fair	fair
W Mat'l	4300	10,000							
H Mat'l	4200	15,000							
Ferrite Shapes									•
K Mat'l	4600	1500	to 2MHz	125°C					
R Mat'l	5000	2300	to 200kHz	125°C	(1)				
P Mat'l	5100	2700	to 100kHz	125°C	(2)		(see Table 3	below for geom	etry
F Mat'l	4700	3000	to 100kHz	125°C	(3)		cons	siderations)	
MPP Cores	7000	14-550	<1MHz	200°C	low	high	high	good	fair
50 Ni-50 Fe Powder Cores	15,000	60-200	<1MHz	200°C	low	high	high	good	fair
KOOL Mμ® Powder Cores	11,000	60-125	<1MHz	200°C	low	low	high	good	fair
Powdered Iron	9000	22-90	<1MHz	200°C	high	lowest	high	fair	fair
Silicon-Fe Laminations	16,000	4000	<1000Hz	300°C	highest	low	low	fair	good
Ni/Fe Tape Cores Ni/Fe Bobbin Cores	7,000 to 15,000	to 100,000	to 100kHZ	200°C	low to medium	high	high	good	fair
Amorphous Tape Cores (iron-base)	16,000	10,000	to 500kHz	150°C	low	high	high	good	fair
Amorphous Tape Cores (cobalt-base)	5,000	to 100,000	to 500kHz	100°C	low	high	high	good	fair
Si-Fe Tape Cores	16,000	4000	<1000Hz	300°C	highest	medium	high	good	fair
Ni-Fe Cut Cores	15,000	15,000	to 100kHz	150°C	medium	high	low	good	fair

^{*}Frequency depends on adjusting operating flux density to levels that keep core losses to acceptable limits.

Table 3 — Ferrite Core Comparative Geometry Considerations

	Core Cost	Bobbin Cost	Windin g Cost	Winding Flexibility	Assembly	Mounting Flexibility**	Heat Dissipation	Shielding
Pot Core	high	low	low	good	simple	good	poor	excellent
Slab-sided Core	high	low	low	good	simple	good	good	good
E Core	low	low	low	excellent	simple	good	excellent	poor
EC Core	medium	medium	low	excellent	medium	fair	good	poor
Toroid	very low	none	high	fair	none	poor	good	good
PQ Core	high	high	low	good	simple	fair	good	fair

^{**}Hardware is required for clamping core halves together and mounting assembled core on a circuit board or chassis.

Table 4 — Output Transformers

Ferrites***	Advantages	Disadvantages
(a) Pot Cores	Shielding excellent	1. Size limitation
	2. Bobbin winding (inexpensive)	2. Heat confined
	3. Hardware availability good	3. More expensive than other
	4. Mounting and assembly easy	ferrites
	5. Low loss materials available	4. Cannot handle large
	6. Printed circuit mounting available	conductors
	7. Can be gapped for specific inductance	

^{***}See Table 3 on characteristics of various shapes.

⁽¹⁾ Core losses decrease up to 100°C

⁽²⁾ Core losses decrease up to 70°C, remain low to 100°C

⁽³⁾ Low core losses at lower temperatures

Table 4 (Output Transformers continued)

	Advantages	Disadvantages
(b) E Cores	 Simple low cost winding Heat dissipated readily Mounting hardware simple Can mount in different directions Printed circuit board mounting available Assembly is simple Cores are inexpensive Large wires can be accommodated Low profile available Low loss materials available Can be gapped for specific inductance 	1. Shielding is minimal
(c) EC Cores	Round center leg provides shorter path length for windings, saving wire and reducing losses Core can handle more power Round center leg prevents bends in wire Can accommodate large wires Printed circuit mounting available Mounting hardware available Low loss materials available Can be gapped for specific inductance	Shielding low More costly than E core Takes up more space
(d) Slab-sided solid center post cores	 Solid round center leg provides less core loss Easy and large exits for large conductors Standard hardware available Assembly simple Low profile is possible Low loss materials available Can be gapped for specific inductance 	1. Shielding medium
(e) PQ Cores	 Optimum ratio of volume to winding area Minimum core size for given design Minimum assembled size for a given design Minimum PC board area Easy assembly Printed circuit bobbin available Cores operate cooler Low loss materials available Can be gapped for specific inductance 	More expensive than E Cores
(f) Toroids	 No radiating flux No accessories required Low loss materials available Cores can be gapped for specific inductance Cores have a large radius to prevent sharp bends in wires Cores can be painted with protective insulation to prevent shorting core to windings Cores are inexpensive High input impedance 	Toroidal winding equipment necessary Subjected to external stray fields Cores are prone to saturate if excitation is unbalanced
Ni-Fe Tape Cores	 High flux density at lower frequencies Size can be small for a given power Wide temperature range (to 200°C) Can handle high power Unlimited range of sizes Can be gapped High input impedance 	 Frequency limitation at high flux density (up to 20 KHz) More expensive than ferrites Need toroidal winding equipment Cores are prone to saturate if excitation is unbalanced
Ni-Fe Cut Cores	Same as Ni-Fe tape wound cores Easy to wind and assemble Will not saturate easily due to gapping	More expensive than Ni-Fe tape cores

Table 4 (Output Transformers continued)

Amorphous Tape Wound Cores	Advantages 1. High flux density 2. Size can be small for a given power 3. Wide temperature range (to 150°C) 4. Can handle high power 5. Extremely low core losses 6. Frequency range to 100 KHz 7. Unlimited range of sizes 8. Can be gapped 1. Same as amorphous tape cores	Disadvantages 1. More expensive than ferrites 2. Need toroidal winding equipment 1. More expensive than
Cores	Easy to wind and assemble Will not saturate easily due to gapping	amorphous tape cores
Ni-Fe laminations	 High flux at lower frequencies Easy to wind — bobbins available Size can be small Can handle high power Wide temperature range (to 200°C) Can be gapped 	Must preassemble stack Assembly cost higher Frequency limitation at high flux density
	Table 5—Inductors	
Molypermalloy Powder Cores	Advantages 1. Distributed air gap 2. Cores do not saturate easily 3. Permeability vs. DC bias remains high 4. Cores have a good radius and are painted with a protective insulation 5. Large energy storage capacity 6. Good temperature stability 7. No accessories required 8. Can wind few turns by hand inexpensively	Disadvantages 1. More expensive than ferrites 2. Toroidal winding equipment necessary for large number of turns
50 Ni-50 Fe Powder Cores	 Same as MPP cores Cores have a higher Bmax-support large AC voltages without saturation occurring Filters can be made smaller in size, requiring fewer turns than molypermalloy or ferrite Large energy storage capacity — larger than MPP, powdered iron, or ferrites 	1. Same as MPP cores
Kool Mµ Powder Cores	 Same as MPP cores and 50 Ni-50 Fe powder cores Cost between powdered iron and MPP Core losses significantly lower than powdered iron 	Toroidal winding equip- ment necessary for large number of turns
Gapped Ferrites (pot cores, shapes)	Cores are easy to gap Gapped cores will not saturate easily Winding is simplified, inexpensive	Cores require accessories such as bobbins, clamps
(toroids)	 Cores can be gapped, won't saturate No accessories required Cores have large radius to prevent sharp bends in wires Cores can be painted with protective insulation to prevent shorting core to windings Cores are inexpensive 	Toroidal winding equip- ment necessary Subjected to external stray fields
Powdered Iron	Low cost Large energy storage capacity	Losses are HIGHER than powdered cores or ferrites Takes up more space
Silicon Laminations	Winding is easy Assembly is simple Energy storage capacity is large Inexpensive	Must preassemble stack Losses are highest of all material types

Table 6 — FILTERS

— Common Mode —

i	Advantages	Disadvantages
Ferrite Toroids	 High permeability (up to 10,000) provides high impedance to unwanted signals Cores have a large radius to prevent sharp bends in wires Cores can be painted with a protective insulation to prevent shorting core to windings Cores are inexpensive 	Toroidal winding equip- ment necessary
Ferrite Shapes (Ungapped)	 Winding is simplified High insulation is possible High permeability materials 	More expensive than toroid Required accessories such as bobbin, possibly clamp Lower effective permeability than toroids
	— In Line —	
Molypermalloy Powder Cores	 Cores do not saturate easily Cores have a good radius and are painted with a protective insulation No accessories required Good temperature stability 	Toroidal winding equip- ment required More expensive than ferrites
50 Ni-50 Fe Powder Cores	 Same as MPP cores Cores have a higher B^{max}—support large AC voltages without saturations occurring Filters can be made smaller in size, requiring fewer turns than molypermalloy or ferrite 	1. Same as MPP cores
Kool Mµ Powder Cores	 Same as MPP cores Core losses lower than the powdered iron Cost between powdered iron and MPP cores B_{max} is between MPP and 50 Ni-50 Fe 	Toroidal winding equip- ment required
Gapped Ferrites (pot cores, shapes)	 Cores are easy to gap Gapped cores will not saturate easily Winding is simplified 	Cores require accessories such as bobbins, clamps
(toroids)	 Cores can be gapped, won't saturate No accessories required Cores have a large radius to prevent sharp bends in wires Cores can be painted with protective insulation to prevent shorting core to windings Cores are inexpensive 	Toroidal winding equip- ment is necessary Subject to external radiation
Powdered Iron	Low cost Relatively high flux density	Losses are higher than powdered cores or ferrites
Silicon Laminations	Winding is easy Inexpensive	Must preassemble stack Losses are highest of all

Additional Literature Available from Magnetics

3. High flux density

Powder Cores (Moly Permalloy)
MAGNETICS ® Moly Permalloy Powder (MPP) cores have a distributed air gap structure, making them ideal for switching regulator applications since their DC bias characteristics allow them to be used at high drive levels without saturating. Composed of 80% nickel, balance iron and molybdenum, they are available in 26 physical sizes (.140" to 3" O.D.) and 10 different permeabilities (14 to 550).

MAGNETICS ® high flux (HF) powder cores are also distributed air gap cores made from a 50% nickel- 50% iron alloy powder. HF cores have a saturation flux density of 15,000 gausses as compared to 7,000 gausses for standard MPP cores or 4500 gausses for ferrites. The core loss of HF powder cores is significantly lower than powdered iron cores. HFC-01

types

(Continued)

Powder Cores (Kool Mµ)

MAGNETICS ® Kool Mµ® powder cores are distributed air gap cores made from a ferrous alloy powder. In high frequency applications, core losses of powdered iron cores can be a major factor in contributing to undesirable temperature rises. KOOL Mµ cores are ideal because their losses are significantly less, resulting in lower temperature rises. Available in sizes .140" to 1.84" O.D. **KMC-02, KMC-S1**

Ferrite Cores

A comprehensive catalog on pot cores, toroids, E, U, and I cores, RM and RS cores, EP cores

FC-601

Critical Comparison of Ferrites with other Magnetic Materials

CG-01-A

Tape Wound Cores

Tape wound cores and made from high permeability alloys of nickel-iron, grain oriented silicon-iron and cobalt-iron. They are available in over 1,000 standard and special sizes for a wide range of frequency applications. Tape thicknesses range from 1/2 mil through 14 mils. Commonly used sizes are in stock for immediate shipment. Amorphous alloys present low loss and interesting characteristics ideal for switched mode power supplies at frequencies to 500 kHz.

Mag Amp Tape Wound Cores

Nickel-iron and amorphous cobalt-base alloys present low core losses and square B-H loops for mag amp regulation in switched mode power supplies at frequencies to 500 kHz.

TWC-400

Bobbin Cores

Bobbin cores are miniature tape cores manufactured from ultra-thin tape (.000125" to .001" thick), and are available in widths from .032" to .25". Wound on non-magnetic stainless steel bobbins, core diameters are available down to .050" or less.

Cut Cores

MAGNETICS® cut cores are ideal for applications in which low core loss is desired and core saturation is undesirable. These cut cores are offered in a choice of soft magnetic materials including Orthonol® (50 nickel-50 iron) alloy, Permalloy 80 (80 nickel- 20 iron), & supermendur.

MCC-100

General Information

"Inductor Design in Switching Regulators." An 8 page bulletin on the core selection and design procedure for power inductors

SR-1

Power Transformer and Inductor Design

How to Select the Proper Core for Saturating Transformers

Inverter Transformer Core Design and Material Selection

"WC-S3"

TWC-S3

Design Software

Common Mode Filter Inductor Design	CMF-2.1
Power Inductor Design	PDR-2.3
Nickel-Iron Laminations	LRC-2.2

Useful Design Articles

The following reference articles are quite informative in the design of switched mode power supplies:

- Gerald L. Fawney, Inductors: MPP Toroids with DC Bias, Power Conversion International, September, 1982
- Phillip E. Thibodeau, The Switcher Transformer: Designing it in One Try for Switching Power Supplies, Electronic Design, September 1, 1980
- Slobodan Cuk, Basics of Switched-Mode Power Conversion: Topologies, Magnetics, and Control, Power Conversion International, July/August 1981 Part 1, October 1981 Part 2
- Robert Miller, Dr. A. Kusko, Thorleif Knutrud, Inductor Designs Easily Perform Delay and Switching Functions, EDN, February 5, 1977
- Tomm V. Aldridge, Richard M. Haas, Designing the Soft Inductor, a New Component for Use in Switching Converters, Solid-State Power Conversion, March/April 1979
- Unitrode Corp. Switching Regulator Design Guide, Bulletin No. U-68
- Colonel William T. McClyman, Transformer & Inductor Design Handbook, Marcel Dekker, Inc.
- Neil Kepple, High Power Flyback Switching Regulators, Solid-State Power Conversion, January/February 1978
- Dan Chen, Harry Owen, and Thomas Wilson, Designing of Energy Storage Reactors for Single Winding Constant-Frequency DC to DC Converters Operating in the Discontinuous Reactor Current Mode, 1980 Intermag Proceedings
- Abraham Pressman, Switching & Linear Power Supply Power Converter Design Hayden Publishing Co.
- Converter Design, Hayden Publishing Co.
 Eugene R. Hnatek, Choose Switching Regulators for Your
 Computer Power-Supply Design, Electronic Design 6, March
 15, 1975

- Clement A. Berard, Switching Power Supplies for Satellite Radiation Environments, Solid-State Power Conversion, September/October 1977
- R.J. Haver, Switched Mode Power Supplies—Highlighting A 5-V, 40-A Inverter Design, Application Note AN-737, Motorola Semiconductor Products Inc.
- R.J. Haver, A New Approach to Switching Regulators, Application Note AN-719, Motorola Semiconductor Products Inc.
- Jagdish Chopra, Squeeze More from Power Supplies, Electronic Design 14, July 5, 1974
- Jade Alberkrack, A Cost-Effective Approach to a 400 Watt Off-Line Switchmode Power Supply, Power Conversion International, July/August 1981
- Rihei Hiramatsu, Koosuke Harada, Tamotsu Ninomiya, Switch Mode Converter Using High-Frequency Magnetic Amplifier, International Telecommunications Energy Conference, Washington, D.C. Nov. 26-29, 1979
- Lloyd Dixon, Raoji Patel, Designers' Guide to: Switching Regulators, Part 1, 2, 3, EDN, October 20, November 5, November 20, 1974
- Tom Gross, A Little Understanding Improves Switching-Inductor Designs, EDN, June 20, 1979
- Stephen Hayes, P.E., Selecting Cores for Inductors
 Used to Store Energy, Power Conversion International,
 November/December 1981
- A. Paul Brokaw, Start-Up Transients in Switching Regulators and Input Filters, Solid-State Power Conversion, September/October, 1976
- Ferdinand C. Geerlings, SMPS Power Inductor and Transformer Design, Power Conversion International, November/December, 1979

HOME OFFICE AND FACTORY

P.O. Box 391 Butler, PA 16003 FAX: 724-282-6955 **Phone: 724-282-8282**

1-800-245-3984 e-mail: magnetics@spang.com

www.mag-inc.com