
© 2018 Parasoft Corporation

1

CWE

The CWE (Common Weakness Enumeration) is a list of problems that can occur in code and lead

to exploitable security issues. CWE complements CVE (Common Vulnerabilities and Exposures)

by describing the code that lies behind software vulnerabilities. CWE has been built by many

contributors from the software security community. It’s managed by Mitre and sponsored by the US

Computer Emergency Readiness Team (US-CERT) and the US Department of Homeland Security

(DHS).

The main goal of the CWE initiative is to stop vulnerabilities at the source by
educating software acquirers, architects, designers, and programmers on how
to eliminate the most common mistakes before software is delivered.

CWE FAQ

This list of over 800 types of problems that can occur in code is comprehensive, but can be

overwhelming, so there is a “Top 25” version that is based on issues that are mostly commonly

happening and have some kind of nasty outcome as well. It’s a simple way to get started by focusing

on things that matter the most and are most likely to happen. Of course, it’s easy to fall into a trap

of complying with the Top 25 and then thinking you’re finished. The Top 25 is just a starting point

on your secure software journey.

CERT

CERT is a project of the Software Engineering Institute (SEI) at Carnegie Mellon University (CMU).

They have created the CERT secure coding standards for a variety of languages, with a focus on

hardening your code by avoiding coding constructs that are more susceptible to security problems.

Embedded Cybersecurity Through Secure Coding
Standards CWE and CERT

INTRODUCTION

Cybersecurity is an increasingly important topic today, as more

and more software is connected and can be exploited to make

software and devices act in ways other than originally intended.

Most organizations are coding at least some security testing,

usually in the form of black-box testing, penetration testing, or

red teams. This is important, but an engineering approach is to

build better, more secure software in the first place. That’s where

coding standards come in. While some standards are related to

finding security defects through techniques like flow analysis and

taint analysis, other standards help identify code that could be

compromised, or coding methods that prevent compromise. In this

paper, we’ll take a look at two common cybersecurity coding

standards, CWE and CERT.

Technical Whitepaper

http://cwe.mitre.org/index.html
https://www.us-cert.gov/
https://www.us-cert.gov/
http://cwe.mitre.org/top25/
https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=21274
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards

© 2018 Parasoft Corporation

2

“we research and develop solutions for identifying and preventing security flaws during development, where it is much
more cost effective than in the test phase or post-deployment”

SEI web site

CWE OR CERT

Both of these standards are based on research that shows that simply testing software isn’t getting the job done. You can’t test security

into an application any more than you can test quality into an application – you have to build secure software from the ground up. They also

acknowledge that many security vulnerabilities are simply exploiting underlying quality flaws.1

A common question regarding CWE and CERT is, “Which should I use? Is one better than the other?” These two security projects complement

each other, and each has a bit different charter. CWE is a list of software weaknesses that may be used to exploit a software system. There is a

detailed statement about this that you can find on both of them on the SEI web site.

“The Common Weakness Enumeration (CWE) is a unified, measurable set of software weaknesses that enables the
effective discussion, description, selection, and use of software security tools and services that can find these weaknesses
in source code and operational systems.”

SEI web site

1 http://swreflections.blogspot.com/2015/01/if-you-got-bugs-youll-get-pwned.html
2 https://resources.sei.cmu.edu/asset_files/WhitePaper/2010_019_001_50405.pdf

CERT-CWE Landscape2

http://swreflections.blogspot.com/2015/01/if-you-got-bugs-youll-get-pwned.html
https://resources.sei.cmu.edu/asset_files/WhitePaper/2010_019_001_50405.pdf
http://swreflections.blogspot.com/2015/01/if-you-got-bugs-youll-get-pwned.html
https://resources.sei.cmu.edu/asset_files/WhitePaper/2010_019_001_50405.pdf

© 2018 Parasoft Corporation

3

CERT is a coding standard designed to help you avoid

weaknesses by avoiding error-prone constructs and

patterns.

 “The CWE and the CERT secure coding
standards perform separate but mutually
supportive roles. Simply stated, the CWE
provides a comprehensive repository of
know weaknesses, while CERT secure coding
standards identify insecure coding constructs
that, if present in code, could expose a weakness
or vulnerability in the software.”

SEI web site

When applied, software security incidents like breaches exploit

weaknesses in software (CWE) and proper guidelines and best

practices (CERT) tell you have to avoid having such weakness in your

system.

 “Guidelines in the CERT C Secure Coding
Standard are cross-referenced with CWE entries.
These cross-references are only created for
guidelines which, if violated, directly contribute to
the referenced weakness. Similar mappings will
be created for other CERT coding standards once
they are completed”

SEI web site

FITTING IT ALL TOGETHER

It’s easy to get overwhelmed by all these acronyms. Let’s try putting it

together now in a useful way. For software, the CVE is a unique ID that

describes a known software vulnerability that can be exploited in the

real world. When analyzed, a particular CVE problem has some root

causes in the code behind it – those are the CWEs. For a denial-of-

service issue (DDoS or DoS) we may find code that is subject to buffer

overflow. The DoS gets a CVE ID. The code that overflows gets a CWE

ID. CERT rules tell you how to avoid the overflow in the first place by

coding differently.

A real-world way to look at it is to think about CVE as a traffic accident.

CWE is the cause or causes behind the accidents, i.e. poor visibility at

an intersection, bad brakes, driver distractions, following too closely,

etc. CERT is avoidance systems, like putting mirrors on blind corners,

having 3rd brake lights in cars, ABS brakes, etc.

This is important to emphasize because people tend to focus on

the testing part of security (“Where is a breachable point?”). This

is a worthy exercise, but should be followed by, “How could I have

prevented that breach in the first place?” as opposed to, “Let me

patch that hole.” CERT and CWE will help you do this when applied

properly.

This can be a challenge because software developers have been

conditioned to think about security tools finding specific vulnerabilities

for them, even with exploit data. When they get a tool message that

says “buffer overflow can happen – here’s a specific piece of data

that can make it happen” they are happy. When a tool tells them “This

kind of code is susceptible to buffer overflow” these same developers

tend to call it a false positive. They’re not trained to code to avoid

problems, but rather to patch weaknesses. We need to encourage

them to be effective software engineers and harden their code using

CWE and CERT.

An interesting article called “Are vulnerabilities really a risk or simply

hype?” explains that most application vulnerabilities aren’t covered

by firewalls, antivirus, etc. The ones they mention in the article are

all quality issues, so security-only scanners don’t necessarily look for

them until the exploit is published! This is the “flavor-of-the-month”

problem with most security tools. They are built like antivirus and look

for known exploits rather than pointing out weaknesses in the code

that should be hardened. The tester looks for flaws – the engineer

looks to improve the code.

RISK AND PRIORITIZATION

One interesting and often-overlooked piece of CWE and CERT is that

both standards have data for understanding risk and prioritizing the

security defects they find. In the case of CWE this is called CWSS

and Technical Impact. Basically, they help you understand that the

underlying code problems detailed in CWE (like buffer overflow) lead

to specific problems when exploited, like DoS or unexpected reading

of protected data. Knowing what problems can happen helps you

better decide which problems are most important in the context of

your application or device. For CERT, there are scores for each rule

and a recommendation that tells you how likely the problem is to

occur in the real world, how difficult it is to mitigate, and the severity

if it does happen. Together they get you a priority level that helps you

focus on the most important issues first.

BEST APPROACH

So what’s the first step? How can you get started? Now that you’ve

decided to get ahead of the security problem by using static code

analysis, you need to pick a tool. The tool should:

• Support all the security standards you need

• Support more than just the CWE Top 25

http://www.gfi.com/blog/are-vulnerabilities-really-a-risk-or-simply-hype
http://www.gfi.com/blog/are-vulnerabilities-really-a-risk-or-simply-hype
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwraf/enum_of_ti.html

Parasoft helps organizations perfect today’s highly-connected applications by automating time-

consuming testing tasks and providing management with intelligent analytics necessary to focus

on what matters. Parasoft’s technologies reduce the time, effort, and cost of delivering secure,

reliable, and compliant software, by integrating static and runtime analysis; unit, functional,

and API testing; and service virtualization. With developer testing tools, manager reporting/

analytics, and executive dashboarding, Parasoft supports software organizations with the

innovative tools they need to successfully develop and deploy applications in the embedded,

enterprise, and IoT markets, all while enabling today’s most strategic development initiatives

— agile, continuous testing, DevOps, and security.

ABOUT PARASOFT

Copyright 2018. All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or
registered trademarks of Parasoft Corporation. All other products, services, and companies are trademarks, regis-
tered trademarks, or servicemarks of their respective holders in the US and/or other countries.

www.parasoft.com

Parasoft Headquarters:
+1-626-256-3680

Parasoft EMEA:
+31-70-3922000

Parasoft APAC:
+65-6338-3628

4

• Work with your code editors and IDEs

• Work with your build and CI tools

• Include flexible and comprehensive reporting

• Include both detection (flow/taint) rules as well as prevention

rules (standards/pattern)

• Take advantage of the risk scoring algorithms in CWE and

CERT to help you prioritize your security defects

• Can selectively execute based on current code, new code,

changed code, and legacy code

Note that researchers at NIST and elsewhere have found that current

open-source static analysis tools aren’t as comprehensive as the

available commercial tools, so make sure that the tool you use has

you covered for what’s important for your organization. OSS tools

tend to be very narrow, finding just a few specific issues and lacking

the ability to configure against real legacy code mixed with new,

changing code.

Once you’ve selected a tool, you need to configure it to run the rules

you want. Resist the urge to simply turn on all the security rules – it

will destroy your long-term viability of static analysis. You’re going

to have more security findings than you can properly manage. Limit

the number of rules in the beginning, and increase it as you bring the

code into compliance.

An easy starting set is the CWE Top 25 – it will limit you to the most

important issues. If you’re using CERT, just use the rules that are set

to the highest priority levels. Get developers used to addressing the

issues and make sure they understand the relationship between rules

that help prevent defects with rules that detect defects. As the code

gets cleaner, add more rules.

In addition, it’s worthwhile to do some root cause analysis on problems

you’re discovering during your security testing. If for example you’re

having SQLi issues, then look for all the rules related to SQLi and turn

them on. If possible, craft a strategy that prevents SQLi defects in the

first place and shore up all the weaknesses in your code.

A MODEST PROPOSAL

At Parasoft, we provide static analysis tools that support all of the

major security coding standards like CWE and CERT, in addition to

other industry standards like MISRA, JSF, & UL2900. On top of that,

we’ve built a rich data-driven reporting system called Parasoft DTP,

that helps you easily identify the most important issues out of the

pool of possible problems you have. This system allows you to input

from any Parasoft tools automatically as well as a host of other tools

(both commercial and open source). It also has open REST APIs for

both input and output, so you can easily integrate it into your build

and developments systems, as well as software accounting systems

of record for auditing.

It’s important to remember that in a broad area like cybersecurity,

you’re not going to find everything you need from a single vendor,

so having a way to integrate all your tools into a single process with

a comprehensive report that takes into account all of your security

activities is important for efficiency as well as compliance needs.

SUMMARY

As cybersecurity incidents increase, we can be sure that consumers

will increasingly care more about the security of software and the

devices they buy. At some point, it will not be surprising to see

governments getting involved with various forms of regulation, such

as requiring compliance with CWE and/or CERT. No matter where

your software runs, whether on a desktop, mobile device, IoT device,

or factory automation, software security is important and achievable

with a rigorous standards-based development process.

