(Getting Started with
Static Analysis

i1 PARASOFT.

parasoft.com/Static-Analysis-Resources :z::: PARASDFI

Automated Software Testing

Table of Contents

What is Static ANalySiS? ..o 2 Dashboards for High Level Analysis ... 9
How does Static Analysis WOrk?..........ccmrrreiiinnnnnnnns 2 Managing Violations of Coding Standards n
Introducing Static Analysis into Your Project.................. 3 Managing Backlog of Bug and Security Warnings12
Start with the End in Mind ... 3 Optimizing Static ANalySis ... 13
Define the set of rules to be used ... 13
Static Analysis at Each Stage of Product Maturity......4 Modify settings for data flow analysis ..., 13
Existing Project — in Current Development.......cccovvirinins 4 Customize rule groups, identifiers, titles and severities......... 13
Existing Project — Product on the Market in Maintenance....4 Customize exiSting rUIES ... 13
Greenfield ProjeCt. ..o 4 Create new static @analysis rules ... 13
Managing Early Static Analysis Reports ..., 4 SUMMATY s 14
Line in the sand @approach ... 4
Acknowledge and defer approach ..., 5
Greenfield @PPrOa@CH ... 5
Configuration versus Filtering. ... 5

Integrating Static Analysis into
Everyday WOrkflOWS...........cooovvvimereienrieenceeeeeeesiee s 6

Integration into Build Systems and Continuous
Integration PIipelines ... 7

Tackling the Backlog of Warnings and
Technical Debt ... 9

Getting Started with Static Analysis

www.parasoft.com/static-analysis :‘:":PARASDFI

Automated Software Testing

What is Static Analysis?

In simple terms, static analysis is the process of examining source and binary code without execution,
usually for the purposes of finding bugs or evaluating quality. Unlike dynamic analysis (e.g. Parasoft
Insure++), which requires a running program to work, static analysis can be run on source without the need
for an executable.

This means static analysis can be used on partially-complete code, libraries, and third-party source code.
Static analysis is accessible to the developer, to be used as code is being written or modified, or to be
applied on any arbitrary code base. In the application security domain, static analysis goes by the term
Static Application Security Testing (SAST). Many commercial tools support both security vulnerability
detection alongside bug detection, quality metrics and coding standard conformance.

Static analysis tools are mandated or highly recommended by safety standards such as ISO 26262 and EN
50128, for their ability to detect hard-to-find defects and improve security of software. Static analysis tools
also help software teams conform to coding standards such as MISRA or CERT.

How does Static Analysis work?

Static code analyzers use a compiler-like front-end to build a syntactic and semantic model of the

software. The syntactic model is then analyzed against a set of rules or “checkers” to see if the code is in
violation. These checkers use pattern-matching algorithms to detect errors such as poor use of language
constructs, use of insecure functions, and violations of coding guidelines. The specific set of checkers used
is configurable by the user. Pre-set configurations are provided for convenience, for instance for coding
standards such as MISRA C.

More sophisticated checkers employ semantic analysis that uses data and control flow to detect complex
bugs and security vulnerabilities. To do this, the static analyzer builds an execution model of the software,
considers possible paths through the code, and evaluates use of data as it flows from source (e.g. user input)
to its destination (e.g. an API call such as a system call). Analyzing every single possible condition and path
would be too time consuming, so the analyzer uses heuristics to detect the most likely paths for evaluation.
Types of errors detected by these checkers include null pointer deference, buffer overflows, and security
vulnerabilities like command and SQL injections.

Source Repository Static Analyzer Parasoft Team Server .]
igure 1:

A high level view of the static

analysis process.

v

Program Model Abstract Program Path
Construction ' Representation Analyzer

Getting Started with Static Analysis

Static analysis is most often used in two ways:
At the developer desktop integrated into their development environment (IDE)

At the command line as part of a build or continuous integration process

Commercial tools like Parasoft C/C++test and Jtest integrate with the leading IDEs, and provide tools in both
environments so users can effectively manage analysis results. Integrating tools and processes to manage
static analysis results enables users to move beyond just a list of warnings.

So where do you start? This paper will guide you through the introduction of an advanced static analysis
tool to your project. The primary assumption is that software already exists and the team is actively working
on developing or maintaining a product. Greenfield (a completely new project) is also considered, however,
many of the processes and techniques do overlap.

Introducing Static Analysis into Your Project

A great thing about static analysis tools is that they can be introduced and used at any stage of a project,
effective even if a project is incomplete and partially coded. The biggest challenge with introducing static
analysis is that a large amount of code can produce a large number of warnings. Therefore, the focus when
integrating static analysis into a project, should be on getting the team productive as soon as possible, and
minimizing the opportunity for the team to get overwhelmed by all the static analysis warnings. This is not to
diminish the importance of these warnings, but most developers don’t have the luxury of fixing existing or
legacy code, at least not immediately. The focus of the approach outlined below is to first integrate the tools
into everyday processes so that access and usability is maximized, and then deal with the most critical bugs
and security vulnerabilities. Finally, as the team becomes more proficient, optimize the tools and processes
to increase the return on investment.

Start with the End in Mind

In order to get the most out of static analysis tools, it’'s important to understand the end goal. If the goal is
better security, for example, that will shape the focus of analysis and remediation, or if the goal is complying
a coding standard such as MISRA C, the focus will become satisfying the coding standard and proving it to
certification entities as required.

When first adopting static analysis, it is especially important to keep the end goal in mind. It is easy to fall
into the trap that more is better, or in other words, that more analysis and more warnings means getting
the most value out of the tool. This is a common trap. Instead, stay focused on the goal. If security is the
focus, keep the focus on improving security and reduce the distraction of other types of warnings. Of
course critical bugs are always important to track down, but they shouldn’t distract from the main goal.
Over time, as the team becomes more proficient, you will be able to incorporate other secondary goals
such as improving overall quality and enforcing coding standards. As static analysis becomes part of each
developer’s daily routine, they will be able to analyze results more quickly and fix bugs more efficiently. At
this time, the secondary goals will more effectively be achieved, instead of simply being overwhelming.

PARASOFT Getting Started with Static Analysis

il PARASOFT

Automated Software Testing

Static Analysis at Each Stage of
Product Maturity

It's incredibly important to keep these goals in mind and ease introduction of static analysis, in order to reduce the
likelihood of overwhelming the team. Also important to consider is the maturity of the product under development,
as it impacts the way static analysis can be adopted. Consider the major stages of

development below.

Existing Project — in Current Development

The most common scenario is a software organization that decides to use static analysis, and rolls it out to their
current projects. Each project may choose to adopt the tools at the start of a sprint or at the beginning of a major
new feature update. Realistically, software teams are always working — even as one product is “finished,” another
version or variant is underway. The key aspect of this adoption scenario is that there is a significant body of
existing code and new code being developed daily. The recommended approach to integration is called “a line
in the sand” approach, which we will discuss in more detail in just a moment. At a high level, this approach means
improving new code as it’s developed, while deferring less critical warnings as technical debt.

Existing Project — Product on the Market in Maintenance

Adopting static analysis for a mature product may have different goals than a project still under development.
This is a product that is in the elder years of the software development lifecycle, in which little new code is being
written, only to fix lingering bugs and security vulnerabilities. The primary approach to adopting static analysis for
these projects is called “acknowledge and defer.” Since little new code is being developed, all of the discovered
bugs and security vulnerabilities are added to the existing technical debt.

Greenfield Project

Although it’s not often that software teams get to have a fresh start, a new product and project is the ideal point to
integrate new tools and techniques into the development process. In these projects, little existing code specific
to the project exists, but it still may rely on third-party and open-source software. Developers can integrate static
analysis in their development environments from the start, ensuring a high standard of quality as code is being
written. This allows for the adoption of coding standards an ensuring critical static analysis warnings are dealt with
as they arise, thus adding less bugs and vulnerabilities to the technical debt pile. The approach to adoption in this
case is aptly named “greenfield.”

Managing Early Static Analysis Reports

Once a static analysis tool has been installed and configured in a project and any dependency issues have been
sorted out, there is usually a fairly lengthy report of violations and warnings reported by the tool. This can be I_earning what to
overwhelming, especially in a large codebase, so how these initial reports are managed will directly influence the
success of integrating the tool into the project. Not all warnings are critical, so everything doesn’t need to be dealt
with immediately. Learning what to address immediately and what to defer is the key to success. As mentioned

address immediately

and what to defer
above, the maturity and size of the product has a direct influence on approach, outlined below in more detail.

is the key to success.
Line in the sand approach

As the name implies, in this approach, developers decide that after the initial analysis, they won’t let any more
critical warnings and violations enter the code base. In other words, they make a commitment to analyze each
critical warning to decide its veracity, and implement a timely fix, if it's indeed a bug. The team may also decide

to add critical warnings already discovered in existing code to be added to the list of bugs in their reporting tool.
Examples of these types of warnings might be critical security vulnerabilities such SQL injections, or serious
memory errors such as buffer overflows. In most cases, the less serious warnings can be deferred for later
analysis. You might be thinking, “doesn’t this just add to our technical debt?” And if you are, you're right! But at this
stage, we're ok with that. Any potential bugs within these warnings were already in the technical debt pile.

At least now, they are identified and much easier to fix at a later time.

PARASOFT Getting Started with Static Analysis

w.parasoft.com/static-analysis E‘: PARASDFI

Automated Software Testing

Acknowledge and defer approach

In the case where a product is already on the market and under maintenance, it is still beneficial to identify
any lingering bugs and security vulnerabilities in the code, but it's not feasible for developers to analyze
(let alone fix) all these warnings. In such a case, it makes sense to look at the top most critical reports

and decide a course of action. The rest of the warnings are acknowledged, as in the software team
recognizes they exist, but they are mostly deferred for a later time. (This again adds to technical debt of
the organization, but as mentioned above, these bugs technically exist already as technical debt.) This
approach differs from the line-in-the-sand approach in that after identifying the key warnings, you simply
defer the rest, without necessarily any analysis.

Greenfield approach

A project with little existing code is an ideal starting point for static analysis. In this case, the software teams
can investigate all warnings that arise and fix found bugs. Unlike the other approaches, there are only a

few warnings to manage, so developers can tackle the additional workload. This is also an ideal time to
implement and enforce a coding standard through the tools, since violations can be identified and fixed
right within the IDE and before any code is submitted to version control (which you could also do in the
other scenarios described here).

The adoption of static analysis in the three major stages of maturity are differentiated by how they deal with
the backlog of warnings, as illustrated below:

Abstract Program Path Figure 2:

Program Model

Construction Representation Analyzer

In a greenfield project,

most reported warnings are
investigated and fixed with

Filter Filter little going into the technical

debt pile. Projects under
l l l l l development tend to have a

backlog of warnings that are

tly def d with only critical
Further Investigation / Remediation mostly deterred with only critica

warnings being dealt with, and

products under maintenance

l l l tend to have most
v

warnings deferred.

Technical Debt

Configuration versus Filtering

One of the main differences between open source or lightweight static analysis tools and commercial
advanced static analysis tools is the ability to configure which set of checkers are enabled for the analysis,
and filter out reported results based on warning category, file name, severity and other attributes. This
helps with the goal of not getting overwhelmed — developers can focus on just the types of warnings that
they are interested in, and reduce the amount of information provided at any given time.

There is also a difference worth noting between configuring checkers and filtering results. Although initially
it might seem better to limit the number of rules in the global configuration, filtering should often be used
instead, to limit the scope of reporting rather than eliminate the checker entirely. If a rule that later turns out
to be important is turned off in the configuration, there will be no history in the warning repository, so you
won’t be able to find out if the error was introduced by recent changes or already in the code before static
analysis was adopted.

Getting Started with Static Analysis

il PARASOFT

Automated Software Testing

A recommended approach is to use configuration to simply limit the set of rules to those that are
foreseeable as useful for the software team. Again, start with the end goal in mind: if improving security is
the key goal, it makes sense to enable all security-related rules, disable less important rules, and enable
one of the built-in secure coding standards such as CERT C. Then, if you're using an advanced static
analysis solution like Parasoft C/C++test, you can leverage its built-in management tools to deal with the
data produced from the static analysis reports and drive future development focus.

Integrating Static Analysis into
Everyday Workflows

The key to making static analysis a success in a project is to make sure the tools are easy to use and
accessible by developers, so the tool must provide useful, actionable information upfront without
overwhelming users with information. This is best achieved within the environment the developer is working
in, such as Eclipse or Visual Studio. Static analysis warnings are delivered in the same manner as compiler
errors in the IDE, and these warnings are highlighted in the code to make analysis and fixing much easier.
See the following example of Parasoft Jtest integrated in Eclipse:

Figure 3:

€ Java - WebKingwebtooltest/XML Seriali-=tionTest. java - Eclipse
Fle Edt Sowce Refactor Navigate Se st Run. Window.. Help

=00
1 org.eclpse.refactoring
1 e5 ProfiePropect
® & 576 Instal Project
2 Test Dynamic Web Project
= 1 Tests Project
= {H (defauk package)
[1) AssignmentExpression.java
[J] AsyncRequestsSample java
® 1) avjava
& [1] BaseFie java
® JJ] Blenkjova
4l] Cockava
® fI) Confusediteration.java
% [1) DatabaseManager.java
(1] Debugseriakzation.java
[1) DefourvaveRewer fova

G

% 1] oveyzero java
@ 11) ecMaNode.java

@) ECMATag java

& [1) Errortogger.java
@ [Fadrestjova

@ [J) Fiepath.java

® {1] Getbbcountjava
% (0] GRSAwTact i

P ADirectly-access line of code to fix

) webooitest » G T bodeon) : g

)
)

)

private SEENg testiMLSerialization(File testFile, hoolean ¢
Object origTest = GPENPEOJECE (new BaseFile (testFile), fa

BaseFile nevFile = SAVEPEGJEEE (origTest, testFile.getNam
try (
openProject (

1/ written for &
) cateh (Exception e) (
return "Caught exception reading serialized xml: " 4
) finally (
if (deleteNewFile) (
nevFile.getFile().delete ()

)

y
return mull;

)

private boolean skipFile(File testFile) throws Exception {
String path = testFile.getCanomicalPach():
bath = vath.replace(\\'. '/

I Testprogress 1 & console.

Notests in progress to display a thistime.

£ (B Code Review 50 Teamsynchv... [
] Taskuist £E Outine "%-ev 9 =]
ALY Advate.
5 uncategorzed
5 & (g Foodmage Tasks [Concerto]
5 & g September Tasks - rian [Concerto]
5% g September Tasks -Me [Concerto]
» 2352; Fix 81980: Prevent dislogs from rendered view
> 3543 Fux FR 63604 Optinize KL seriakzation
» 39942 Fx PR 94035 : Show more dekais For panetration testng errors from Incure for Java
4584 Fix FR 84642 ; Update pen test attack vakues from OWASP
(= 4585: Fx PR 84843 : Abity to selec pen test attack types from configurstion

» 4713: Write Applcation Secrty Testing Beper

4739: Debug why Tnsuse for errors when

5087: Fox FR 85398 : Do not wrke defaulkt values in {M. seriazation
- 5068: Fix FR 85399 ; Do ot wrke cbjects with al defauk values into XML serikzation

5255 Qualty Tasks
(2 s2s6: Customer Tasks

5257: Management Tasks
(5 C September Tasks - Mike [Concerto]
& & (G September Tasks -Sam [Concerto]
#© G September Tasks - Tom [Concerto]
& iy September Tasks -Tony [Concerto]

s3I e

= @ (28] Fix Static Analysis Vidations

& [9]baranov.
® 4 [11] jokubisk
& [S]rjsamour
5 & [2treong

= 8 [1] com.parasoft. xtest.common web i ool messaging
= ok [1] MQRFHZPscConfigurationE dtor java
= '@ (1] Avod NulPoiterException (80.EXCEPT.NP-1)
S & [Line 515] e’ may possiby be rul

S« MQRFHPSCC K
@ . (163): _table 0
. (163): return _tablewer.
© MRRFZPse o] length == 1) {
5 & MQRFHZPsCC: 17): PR

So what does a developer do when analyzing each warning? This is best described in the process diagram

shown below:

PARASOFT Getting Started with Static Analysis

Example of static analysis tool

integration into an IDE

www.parasoft.com/static-analysis -
] PARASOFT

Automated Software Testing
Code
Analysis .
Figure 4:

The static analysis

warning lifecycle.

Filtering /
Aggregation

Remedation Investigation

Prioritization

It starts with aggregating and filtering the static analysis results, a critical first step to prioritize and focus

on key warnings. Usually, QA and team leaders decide on the quality goal in mind and structure the
configuration of the analysis around this goal. To improve security, for example, checkers related to security
would be enabled along with a secure coding standard such as CERT C.

Developers then investigate and fix the warnings they find, based on the policies the team has in place
and the maturity of the product. As explained above, in a greenfield project, most warnings would be
investigated and prioritized since the amount of code would be relatively small, while at later stages of
maturity the filtering and prioritization would be stricter so developers would only address truly critical
warnings. In either case, the process is the same.

After changes are made in response to a static analysis warning, code is checked into version control and
analyzed again during the next build. This short and tight feedback loop greatly improves the quality and
security of the code right at the time it's being written and modified.

Integration into Build Systems and Continuous
Integration Pipelines

The main integration point for static analysis tools and build systems is through a command line interface.
Static analysis used in this fashion acts somewhat like a compiler would in the build structure. Files are
processed in the same manner, although the output isn’t an executable but rather results that are stored in a
repository, indexed by file and build number. With Parasoft C/C++test, this is handled by Parasoft’s reporting
and analytics system (Parasoft DTP), which is both a repository and an intelligence engine that analyzes the
results. This analysis and accompanying information is fed back to each developer to their IDE and made
available through Parasoft’s web portal for managers and team leads.

Getting Started with Static Analysis

Automated Software Testing

Continuous Parasoft DTP Source Control

Integration Server
Figure 5:

Integrating Parasoft static
analysis into a continuous
integration pipeline. Parasoft

DTP is the central repository and

»
4

analysis engine for warnings.

%{}%%

4 | lJ STy
o R
-

flo]iel!

Team Lead Reports

Developer IDE

Parasofts automation capabilities are designed to be integrated into any kind of build system used at a
customer premises, including continuous integration processes. Parasoft tools integrate with popular CI
tools such as Jenkins, Bamboo and Visual Studio Team Services making it easy to include automated unit
testing and static analysis as part of an integration, build and deploy cycle. For example, the Parasoft plug in
for Jenkins provides a build settings menu to enable the analysis and location for reports.

Build Settings

@ Publish Parasoft analysis results (7] Figure 6:
Settings Build settings specifically for
ADSCh® 0f WOrIGACH relatve pah 10 The seTngs fie. Used 10 configqure Parasof services - cick on help Bullon kor more into Parasoft static analysis

@ Report location within Jenkins.

File panern

Filgset ncludes setting that specifies the report files inside workspace directory. Detault pattern is *“report.xmi
Be sure not 10 Include any non-report files into this pattemn.

Advanced...

E-mail Notification
Reciplents

@ Send e-mail for every unstable build

Send separate e-mails to individuals who broke the build

®

Send e-mail for each falled module

Also, the plugin includes a custom build environment for Parasoft analysis, integrating the analysis
process into an existing pipeline setup. See the following example from Jenkins build menu. Integrating
directly with the common tools used in the industry makes including full-project testing and static analysis

straightforward.

Getting Started with Static Analysis

Build Environment

Figure 7:
Publish Parasoft analysis results

Custom build environment for
Aggregate downstream test results

Parasoft analysis.
Archive the artifacts

Build other projects
Publish JUnit test result report
Publish Javadoc
Record fingerprints of files to track usage
I Git Publisher
E-mail Notification
Editable Email Notification
Set GitHub commit status (universal)
| Set build status on GitHub commit [deprecated]

Delete workspace when build is done

Add post-build action ~

Tackling the Backlog of Warnings and
Technical Debt

The next phase of adopting static analysis tools is working to reduce the backlog of warnings and
technical debt in a project. In the case of a product under maintenance or in development, there is likely
a sizeable backlog to deal with. In the case of a greenfield project, there is less backlog, although the
recommendations remain the same for each stage of maturity.

The best starting point for dealing with a backlog of warnings is to prioritize and filter the results based

on the desired outcome. Using security as an example, it makes sense to prioritize the backlog in terms of
security warnings, ranked by criticality. This is a continuation of the approach used when first introducing
static analysis into a project, but now the focus is on the next digestible set of warnings for the team to
analyze. This is handled is several ways by Parasoft C/C++test, as we'll get into below.

Dashboards for High Level Analysis

Parasoft’s centralized reporting and analytics dashboards provide developers and managers with the ability
to see the current state of a project from various viewpoints, and further navigate into more detail where
needed to establish a set of warnings for further investigation. Consider the following dashboard showing a
project’s current compliance with the CERT C coding standard:

PARASOFT Getting Started with Static Analysis

stat
B 1] PARASOFT
()
‘<I ®
Automated Software Testing
Filter Period Baseline Build Target Build
CERTC ITC-bench | Last52weeks | FirstBuidin Period | Latest Build .
Figure 8:
CERT Compliance = CERT L1 Compliance = CERT L2 Compliance = CERT Levels =
Type: All

Level: L1 Levet: L2

An example of a web portal

539
(o] dashboard. In this case, a
© L1 ot Compiant 66.7% 61.7% 74%

. Fases i Compance: 7 u summary of CERT C compliance
© L2~ ot Compltant Rules Enabled: 340 = Y P

3- Violations: 12922
€ L3 - Not Compliant 2639 27760 771104 iolations T

ITC_Bench-2018-10-11 ITC_Bench-2018-10-11 ITC_Bench-2018-10-11 ITC_Bench-2018-10-11 ITC_Bench-2018-10-11

CERT Compliance - Rules by Status = CERT Compliance - Recommendations by Status = Compliance by Priority =
Type: Rule Levek: Al Type: Recommendation Levek All Compliance: CERT C Prioriy
Name Passed /# of Rules

7.4K 0 55K 0 Level 1 - Priority 27 1" | =

Level 1 - Priority 21

Violations Deviations Violations Deviations Level 1 - Priority 13 1
_ Level 1 - Priority 12 |
Build: ITC_Bench-2018-10-11 Build: ITC_Bench-2018-10-11
Compliance: CERT C 2018 Compliance: CERT C 2018 I [
|

Using this web portal, users can dig deeper into the analysis, down to the file and code level if needed,
and investigate warnings entirely within the web portal or in an IDE. Warnings can be prioritized, assigned
to developers, suppressed, or marked as a false positive at this stage. See the following example from the

Parasoft explorer:

©~ demo~

Cha Filter Build Priority Rule q .
o8 Senrd be b0:2017-06-28 5 Selected MISRAZ012-DIR_4_d-a Figure 9:

The Parasoft violation explorer.

File Line Message v | Severity v | Assigned To v | Priofity a Action Risk/Impact Category Rule ID

bec 508 Section of code should not be ‘commented out 4 igarg Not defined None Undefined Dir 4.4 (Advisor... MISRA2012.DI
scanc 108 Section of code should not be ‘commented out 4 igarg Not defined None Undefined Dir 4.4 (Advisor. MISRA2012-DI.
scanc 813 Section of code should not be ‘commented out’ 4 igarg Not defined None Undefined Dir 4.4 (Advisor. MISRA2012-DL.
scanc 1663 Section of code should not be ‘commented out 4 igarg Not defined None Undefined Dir 4.4 (Advisor MISRA2012-D.
numeric.c 218 Section of code should not be ‘commented out’ 4 igarg Not defined None Undefined Dir 4.4 (Advisor. MISRA2012-DL.
stacke 421 Section of code should not bo ‘commentsd out 4 igarg Not defined None Undafined Dir 4.4 (Advisor... MISRA2012.D
string.c 182 Section of code should not be ‘commented out 4 igarg Not defined None Undefined Dir 4.4 (Advisor,,, MISRA2012.D,

1-8/8iems &

. > » 25 v items per page
Fie (Violation): be.c o Previous Next Violations selected: 1

505 #endif v

566 #else /* not MSDOS, or __TURBOC__ * e 5 -

507 #if defined(_AIX) Prioritization Modification History Violation History Documentation Timeline Details.
@508 - /* I don't know what this was needed for, but it pollutes the namespace.

589 | So I turned it off. rms, 2 May 1007. */ Severtty:

510 /* #include <malloc.hs */

511 #pragma alloca)

512 #define YYSTACK_USE_ALLOCA AN

13 delse /* not MSDOS, TURBOC__, or AIX */

516 #iF @ Assigned To: | igarg

515 #ifdef _hpux /* haible@ilog.fr says this works for HPUX 9.05 and up,)

516 and on HPUX 10. Eventually we can turn this on. ¥/ A

517 #define YYSTACK_USE_ALLOCA | Pricy:. PRSI “

518 #define alloca _builtin.alloca o

519 #endif /* _hpux * Action: | Suppress 7

520 #endif

521 fendif /* ot . : 7

522 dendif /* not or __TURBOC__ */ Peiinpent:: PR 2

523 endif /* not /

520 gendif /* not GNU C */ Due Date:

525 #endif /* alloca not defined */

S fendis /* WSTAGCUSE ALLOCK ot defined */ e [

528 #ifdef YYSTACK_USE_ALLOCA

529 #define YYSTACK_ALLOC olloca @Aoplyto Al Branches RECCRRl Cancel

530 -

Getting Started with Static Analysis

il PARASOFT

Automated Software Testing

Managing Violations of Coding Standards

In most cases when analyzing source for coding standard compliance, violations are reported as static
analysis warnings. In a large project, there are initially going to be lots of warnings, and managing them
quickly and efficiently is critical. Parasoft’s violation explorer is the key tool to navigate, evaluate, prioritize,
and assign reported errors for remediation. If a static analysis rule violation turns out to be valid but
justifiable, considered harmless, or not applicable, a developer can suppress the error and a deviation can
be documented. These deviations are reported up through each level of the project to the dashboard and
compliance documentation.

To make coding standard compliance feasible for existing projects, it’s critical that teams focus on the rules
that are considered mandatory first. Compliance is often based on meeting the mandatory requirements
with violations of recommended rules if they are documented appropriately. Standards allow rules to be
re-categorized, if non-mandatory, allowing for violations if justifiable and documented. Without this, trying to
correct every violation becomes infeasible.

Parasoft saves its users many extra hours of work by providing management with a navigable interface to
explore violations and automatically generate reports for certification evidence, if needed. An example of a
MISRA C deviation report is shown below:

&H- @~ ocemo~

Figure 10:
MISRA Deviation Report An example Parasoft MISRA C
Filter: bc Compliance Profile: MISRA C 2012 Compiler: gcc 4.9 Analysis Tool: Parasoft C++test 10.3.2 Target Build: bc-2017-06-28 DeVlaUOn Report

Dir 4.1 (Required) Run-time failures shall be minimized + - No Deviations
Dir 4.2 (Advisory) All usage of assembly language should be documented « - No Deviations
Dir 4.3 (Required) Assembly language shall be encapsulated and isolated v - No Deviatior
Dir 4.4 (Advisory) Sections of cod should not be commentsd out™

Rulo ID: MISRA2012-DIR 4_4-a
Deviation Type: DTP Suppression
Action: Suppress
Risk/impact: Undefined
Roference #: PRA-123

Modification History

User: demo Fiold: referenceNumber
Date: 2017-08-17 08:20:30 PM Old Value: NIA
New Value: PRA-123
Field: violationAction
Old Value: None
New Valus: Suppress
Comment: As per Deviation Permit #PRA-123

User: demo Fleld: priority
Date: 2017-08-17 08:20:37 PM Old Value: Not Defined
New Value: Do ot show

Dir 4.5 (Advisory) Identifirs in the same namespace with overiapping visibiity should be typographically unambiguous + - No Deviat
Dir 4.6 (Advisory) typedefs that indicate size and signedness should be used in place of the basic numerical types

Rule ID: MISRA2012-DIR_4_6-b
Deviation Type: in-Code Suppression
Action: None
Risk/impact: Undefined
Reason: I DIR_4_60
Suppression Author: igarg

PARASOFT Getting Started with Static Analysis

Managing Backlog of Bug and
Security Warnings

It's important for teams adopting static analysis to understand that it isn’t necessary to fix or analyze

all warnings. All warnings are not created equal, so the severity level is the best indicator of how much
effort should be placed on investigating and fixing a warning. Continuing the “line in the sand” approach
discussed above, when digging into the backlog of warnings, we are effectively moving the line in the sand
a bit farther each time.

Parasoft Jtest and Parasoft C/C++test enable users to prioritize and filter warnings within the IDE using
configurations. For example, severity and category (type of warning, e.g. security-related) can be used to
create a set of warnings suitable for analysis. An example new user configuration is shown below:

Configuration i User configuration
M Details
1 Prioritized findings Select filters to apply
[J Suppressed Findings [¥] Limit visible findings to: 500
[J Tested File
VI Tested File and Ca show
ested File an tegories -
= [V Findings
New Profile .
[["] Suppressed findings
Layout
Available Selected
Severity = Description
Project
User Add
Category (R emove
Subcategory
Line U
Relative Path Down
Path
File
Type —
oK l l Cancel
& DTP Findings 2 & DTP Finding Details & Console KM% =0 ‘ll
" 182 findings Import from ot |
Description - Severity Risk/Impact Priority Due Date Show) 4 Ol .
& The field '_connection' is used 2 - High Undefined Not defined Unknown CERICHEEETET = etiie
& Text label ‘casel0' may be a ty 2 - High Undefined Not defined Unknown jiEstadfi o tategones

& Stream not closed: new Fileln; 1 - Highest ~ Undefined Not defined Unknown Prioritized findings

& Stream not closed: flnput, <Fil 1 - Highest Undefined Not defined Unknown
& Stream not closed: <Writerre' 1 - Highest ~ Undefined Not defined Unknown
& Socket not closed: sock 1-Highest Undefined Not defined Unknown

Incrementally moving the “line in the sand” to tackle the next highest priority and category is the best
approach for dealing with a large backlog of warnings. Eventually, a cut off point is reached due to time and
budget, but software teams should feel comfortable that they have made significant improvement in quality
and security despite any remaining backlog of warnings.

Getting Started with Static Analysis

il PARASOFT

Automated Software Testing

Figure 11:

Custom test configuration

settings inside the IDE.

Figure 12:

Configurations can be selected
in the DTP Findings view in
the IDE.

i“{ PARASOFT.

Automated Software Testing

Optimizing Static Analysis

At some point, when a software team has integrated static analysis into their day-to-day activities and
everyone is comfortably working with the results, the team will want to customize the tools to better fit their
project and organization. This is an important stage of static analysis adoption: optimization. Optimizing
static analysis means adapting the rules and the way violations are reported to improve the efficiency and
ROI for the organization. Parasoft’s static analysis tools support a variety of configuration and customization
options to give complete control, if needed, over the static analysis rules and reports.

Define the set of rules to be used: Developers can decide which set of rules are to be enabled, globally,
for an entire static analysis run. As mentioned above, it’'s important to only disable rules that the team
doesn’t see as useful in the foreseeable future.

Modify settings for data flow analysis: In Parasoft’s static analysis tools, flow analysis rules are handled
as a special category since they involve more complex analysis. Developers can enable and disable which
rules that want to use in this category. There is also the ability to report on un-validated violations (cases
where bugs are detected but path analysis has not validated the possibility of this error being possible). This
means more potential bugs found (lower false negatives) at the cost of more incorrect findings

(false positives).

There are several options for data flow analysis to control the depth of the analysis which impacts
performance and accuracy. There are also options for detecting multithreading issues, verbosity of the
reports, and custom terminations (functions that terminate a flow of execution). There are also options to
control the list of resource functions such as memory creation and deletion (to detect memory leaks, for
example). This is also where data sources and sinks are defined for tainted data flow analysis.

Customize rule groups, identifiers, titles and severities: In organizations that have already established
coding guidelines, it’s possible to customize the warnings reported by Parasoft’s static analysis tools to
conform to a completely custom set of warnings, descriptions, and categories. These custom configurations
can be shared amongst the entire team through the team server as well as directly into each IDE.

Customize existing rules: An important feature of Parasoft’s static analysis is the ability to customize
both the set of rules to check and the rules themselves — including creating new custom rules. The rules
provided with Parasoft tools are a comprehensive set to select from, but specific coding guidelines may
differ slightly, or require well-defined exceptions to the rules. Since Parasoft tools use both pattern-based
analysis and the more complex flow analysis, customizing each type of rule is different.

Pattern-based rules have checks for pattern matching built into each rule. These are usually modified
by parameterizing the rule to suit a user-specific situation. In Parasoft tools, this is easily done with the
RuleWizard widget, which provides an easy-to-use interface for customizing existing and new rules
(explained in more detail below).

Flow-based rules are more complex and aren’t fully customizable, but are parametrized instead, allowing for
new applications of the rule logic. An example of this would be modifying the memory leak detection rule
to detect leaks from project-specific memory allocation and deallocation functions, or even resource leaks
from other resources such as files.

Create new static analysis rules: Software teams can create whole new pattern-based rules, if needed, or
base their custom rule on an existing rule. This customization is achieved in the user-friendly RuleWizard, as
mentioned above. Rules are created graphically (by creating a flow-chart-like representation of the rule) or
automatically (by providing code that demonstrates a sample rule violation).

PARASOFT Getting Started with Static Analysis

il PARASOFT

Automated Software Testing

+* RuleWizard - [C,C++ - AssignmentOperator.rule] B 2 | EI|5|)

File Wiew ‘Window Help Figure 13:
g +&+ @ @ The RuleWizard provides a
= visual way to customize static
(R

#-0 Constants analysis rules.

#-[D Declarations

-3 Ezpressions rﬁ_‘\

; Bad Type

#- General aud ¥ - sud 'YF]

#-[D Mame Spaces Member Variable — painter

-0 Protection Specifiers r—-}_“‘

[+ Statements Body g S0

i
F-3 Types MEthrW—) F
| |s0petator

CC++

Loading python modules for dictionary: C,C4++ ;I

There are many other customization opportunities with Parasoft static analysis tools, to meet the specific
demands of every unique software organization. As adoption of a tool matures, teams can make the most
of their investment with customized settings and rules.

Summary

Static analysis tools provide software organizations with the ability to detect and track bugs and security
vulnerabilities without needing to execute code. These tools can be applied to existing, legacy, and third-
party code, and is also useful for incomplete code, to enable bug detection as soon as code is written,
rightin the developer’s IDE. Parasoft’s static analysis tools support industry-leading IDEs and integrate into
existing build systems and continuous integration pipelines, while static analysis warnings are stored on a
file and build basis alongside test results for prioritization and management.

The adoption of static analysis varies to some extent based on the maturity of the project. A large
body of code does result in numerous warnings, but this is completely manageable and the success of
adoption depends on how teams decide to tackle the results. Various techniques are introduced for each

major maturity level of a project and how these tools can be integrated into the day-to-day workflow for
developers, team leads, and managers.

As adoption of Parasoft static analysis tools matures, software teams can optimize their tool chain by

customizing the tools themselves to meet their specific needs, increasing their ROl and achieving their
project’s end goals.

PARASOFT Getting Started with Static Analysis

i PARASOFT.

Parasoft Corporation
101 E Huntington Drive Monrovia, CA 91016 USA
Sales: 1-888-305-0041 | International Sales: +1-626-256-3680

www.parasoft.com

	Button 6:
	Button 19:
	Button 5:
	Button 7:
	Button 8:
	Button 9:
	Button 10:
	Button 11:
	Button 12:
	Button 13:
	Button 14:
	Button 15:
	Button 16:
	Button 17:
	Button 18:

