
Accelerating MISRA C and SEI CERT C Compliance with

Dedicated Reporting and Workflow Management

Coding standards can be used to make source code better, more
portable, readable, and predictable. The most intensive use of
coding standards are in safety-critical industries, where safety
and security are the focus. Coding standards compliance is also
explicitly or implicitly required by many functional safety standards
(for example, ISO 26262 explicitly recommends static analysis and
coding standards compliance, mentioning MISRA as an option).

This paper discusses what it really means to achieve coding
standard compliance, using MISRA C 2012 and SEI CERT C
as examples, and how to accelerate compliance with tool
automation, dedicated reporting, and workflow management. The
recommendations made here are generic and can be applied to
any coding standard.

Technical Whitepaper

HOW DO YOU CHOOSE A CODING STANDARD?

There are many coding standards to choose from – MISRA, SEI CERT, AUTOSAR, JSF, UL 2900, and
others. So, the natural question arises: Is there one good coding standard to use to achieve safety and
security? Perhaps the project needs to comply with more than one coding standard? If so, which ones?
The common sentiment in the industry is to associate certain coding guidelines with a specific goal for
code compliance, such as safety or security.

Generally speaking, MISRA and AUTOSAR C++ are specific for improving safety, while SEI CERT is used
for improving security. But just as safety and security overlap in the real world, there is a significant overlap
between these standards. Taking a closer look at MISRA C 2012, for example, it covers security aspects
quite well. Nonetheless, CERT has broader support for security and treats this subject more thoroughly.
Does it make sense to attempt to comply with more than one coding standard? In general, it’s not
recommended to strive for compliance with more than one standard. Mainly because of the overlap, which
results in wasted effort and a reduced return on investment of adopting the standard and associated tools.
However, it may make sense to pick one primary standard as a base and extend it with selected guidelines
from other standards that make sense for the project. For example, if the project requires compliance to
functional safety standards, the project could use MISRA as the base and extend the core set of rules with
some additional rules from CERT.

Parasoft’s experience with its customers building
safety-critical automotive software, illustrated
in Figure 1, shows this mixed approach. These
customers selected MISRA C 2012 as a base
standard for their development and supplemented
it with a selection of the rules from CERT and
a collection of custom guidelines developed
internally in the organization (created using Parasoft
C/C++test extension tools for custom checkers). The
customers settled on a rule set composed of 60%
MISRA rules/directives, 20% CERT rules and 23%
custom checks, for a total of 250 rules.

Figure 1: Parasoft observed distribution of coding
standard rules for automotive projects.

https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

© 2019 Parasoft Corporation

2

For the best results, an orthodox approach of adopting only one standard should be avoided in
favor of a hybrid approach with one main standard and supplementing it with additional selected
guidelines. Selecting these guidelines is not the focus of this paper but the discussion of a
pragmatic approach to adopting standards is part of an overall approach to reducing the impact
and cost of these standards.

WHAT DOES IT MEAN TO BE COMPLIANT?

The strict definition of compliance is, to some extent, loosely defined in the industry. What does it
mean to be MISRA or CERT compliant? How does an organization prove to auditors due diligence
and adherence to the spirit and letter of the each guideline?

Many organizations have their own definitions of compliance, based on general principle that the
source code is free from violations of the coding guideline. At a high level, this seems sufficient,
unfortunately the imprecise definition of compliance is very often a reason for friction between
manufacturers, sub-contractors, certifying authorities, and customers. A clear recommendation
Parasoft makes to all of its customers is to have a clear definition of compliance to a specified
standard if you are developing a software for external customer. The definition of compliance
should be an inherent part of business negotiations and be precisely defined. Luckily, in some
cases, the standards themselves provide such guidance.

MISRA COMPLIANCE REQUIREMENTS

In response to ambiguity about compliance requirements, a dedicated document titled MISRA
Compliance 2016: Achieving Compliance with MISRA Coding Guidelines was created to clarify
requirements. This document precisely defines how to achieve compliance and what kind of
documentation shall be prepared to prove achieved compliance. At the root of this document is
the assumption that the software is developed with the disciplined and documented development
process, with compliance activities integrated from the very beginning. So, we need to scan the
code for compliance with guidelines and maintain appropriate documentation of the process
MISRA standard mentions four main reports from compliance process:

• Documentation stating how the guideline is going to be enforced,
the Guideline Enforcement Plan

• A record of any changes to the default categories of MISRA rules,
the Guideline Re-categorization Plan

• The documented deviation process with deviation records and deviation permits,
the Deviations Report

• A document summarizing the project compliance level,
the Guideline Compliance Summary

Not only must team leaders make sure developers create the source code free from violations of
MISRA guidelines, but they also need to assure documentation of the process and generate very
specific reports.

SEI CERT C CONFORMANCE

The SEI CERT C coding standard does not require a lot of documentation to be prepared to claim
compliance. Quoting the standard:

“Conformance to the CERT C Coding Standard requires that the code
not contain any violations of the rules specified in this standard. If

an exceptional condition is claimed, the exception must correspond
to a predefined exceptional condition, and the application of this

exception must be documented in the source code.”

https://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA%3d&tabid=57
https://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA%3d&tabid=57
https://wiki.sei.cmu.edu/confluence/display/c/Conformance+Testing

© 2019 Parasoft Corporation

3

Note that conformance is based on rule violations, CERT C distinguishes between rules and
recommendations. Rules are considered to be obligatory while recommendations are not.
Exceptions made for rule violations must be documented. CERT C also classifies rules and
recommendations in the standard into three levels based on a risk assessment that considers
the severity, likelihood, and remediation cost. Rules classified as L1, for example are high
severity, likely to occur and inexpensive to repair. Conversely, where L3 represents rules that
are low severity, unlikely to occur and expensive to fix. See the following diagram from the
standard:

Conformance to CERT C is based on these levels. Software can be claimed to be L1, L2, or full
conformant based on what class of rules are met. This is a useful specification because it allows
developers to focus on the most critical security practices first and achieve the highest return
on investment for implementing the standard.
Deviations from the rules is necessary in very specific cases. If automated detection, e.g. with
static analysis tools, finds a rule violation but the code is indeed correct, this exception must
be documented. However, deviations are not granted for performance or usability reasons, and
are at the discretion of the lead assessor. If enough evidence is provided that a vulnerability
doesn’t exist, exceptions are accepted. In practice, it’s often easier to fix the code to conform to
the rule that evidence that a vulnerability doesn’t exist.

Accelerating Coding Standard Compliance with Workflow Management

Zooming in on a typical developer workflow during active software development, the process
consists of coding (either new code, refactoring, or fixing existing code), local unit testing,
submitting code to source control, initiating a continuous integration (CI) build and receiving
feedback from such a build, fixing errors, and continuing on to the next function to implement.
Introducing a coding standard into this day-to-day process is time-consuming and intrusive. It’s
no wonder that many of the industry standards highly recommend automated static analysis to
help enforce and document coding standard compliance.

Consider a revised day-to-day workflow that incorporates a coding standard (we are using
MISRA C and CERT C as our examples here):

1. A team lead, architect, or functional safety officer defines the test configuration with a
collection of static analysis checkers to enforce the coding standard. This may be a one
time process or repetitive action over the project lifetime.

Figure 2: SEI CERT C rule
classifications based on risk
assessment.

© 2019 Parasoft Corporation

4

2. The initial configuration that is shipped with the solution can be adapted for the
needs of specific organization. This configuration tends to be a combination of rules
from MISRA C, CERT C and custom rules. Parasoft C/C++test supports multiple
configurations that are customizable and shareable to the entire team.

3. Most coding standards allow for customizations, the configuration should consist of
rules the development team agrees are mandatory, at least initially. Rules considered
advisory or recommendations can be disabled in the configuration.

4. Once the test configuration is prepared it is automatically made available to all the team
members, directly in their IDEs, for continuous usage during software development.

5. This point in the workflow is critical in order to accelerate the compliance process and
take advantage of the benefits of early defect and security vulnerability detection of
automated static analysis. Developers scan their code right after it is created, near
instantaneously. From our Parasoft’s observations, even 10 to 20 minute delays in
delivering the compliance scan results is long enough for developers to lose focus
and continue with other work.

6. In the next step developers check-in their code, what triggers the CI build, where an
additional compliance scan is made. The questions often arises if it makes sense to
set up static analysis results as a gate for the code check-in -- if the source code is not
compliant then the check in is rejected. In Parasoft’s experience this does not work
well. Developers get easily frustrated by rejected commits and team work is hindered,
and dependent pieces of code are not integrated on time. Parasoft recommends
workflows do not block code check-ins but, rather, assume that any violations that
make into the source repository are caught at the CI level.

Figure 3: Technical lead or
architect creates the team

policies via a test configuration
in Parasoft C/C++test and

distributes to the team.

© 2019 Parasoft Corporation

7. During the CI build, a full scan of the source repository is made. Why perform an additional
scan if the code is already scanned in the IDE? Integration-level scans provide a safety net
which is required since some guidelines are detectable only at the system level, or a violation
is simply overlooked. Also, a full system view of the source is needed for more complex static
analysis to help detect defects and security vulnerabilities.

8. The results from the CI scan are published to Parasoft DTP which stores and analyzes the
data.

9. Team leaders can use the web portal to access the Parasoft DTP results to discover the
current state of compliance and drill down into specific areas of concern. They can then
assign tasks to the developers to follow up on violations found during the analysis.

10. Developers then fix these problems, scan the code locally and commit corrections initiating
another cycle.

11. As the project gets close to completion and the team is close to its compliance target,
compliance reports are automatically generated, including all the documents that are
required by the primary coding standard that is in use. These dedicated reports, specific for
the standard, are a huge time saver, reducing the amount of tedious manual work related to
creating and maintaining the compliance documentation.

Figure 4: Developers scan their
code for compliance before

committing their code to source
control. This early detection

prevents most violations and
defects from entering the build.

© 2019 Parasoft Corporation

MISRA Compliance Reporting

Parasoft C/C++test provides dedicated reporting for documenting compliance to MISRA C. A
dashboard on the Parasoft web portal provides at-a-glance views on the current state of the
project. An example is shown below. Each of these dashboard widgets is linkable to a more
detailed view such detailed violation reports, files and source code.

Figure 5: The source code
commit initiates a CI process
which includes a full scan of
the project source. Catching

more sophisticated violations
and defects. Results are
stored and analyzed by

Parasoft DTP.

Figure 6: Parasoft MISRA C compliance dashboard.

© 2019 Parasoft Corporation

Parasoft C/C++test provides the necessary reports needed to document MISRA compliance
as outlined in MISRA Compliance 2016: Achieving Compliance with MISRA Coding Guidelines.
Automating these reports is a big time saver, greatly reducing the amount of manual work required
to document project compliance.

SEI CERT C Conformance Reporting

Although the SEI CERT C standard doesn’t require specific compliance reports it does require
a project to document conformance to the rulesets (e.g. L1, L2 and fully compliant.) Parasoft C/
C++test includes a dedicated dashboard for CERT C conformance, as illustrated below.

Team leads can use this dashboard view to dig deeper into specific areas of concern and assigned
tasks to developers to increase conformance over time. Viewing the results in context of the risk
assessment framework used by the coding standard itself (for instance, seeing specific violations of
L1 guidelines), significantly streamlines the process. Automating this reporting reduces the amount
of analysis team leads and architects need to perform in order to achieve CERT C conformance.

Figure 8: Parasoft CERT C
compliance dashboard.

Figure 7: Parasoft C/C++test dedicated reports for MISRA C compliance

From development to QA, Parasoft’s technologies reduce the time, effort, and

cost of delivering secure, reliable, and compliant software, by integrating static

and runtime analysis; unit, functional, and API testing; and service virtualization.

Powerful reporting and analytics help users quickly pinpoint areas of risky code and

understand how new code changes affect their software quality, and groundbreaking

technologies that add artificial intelligence and machine learning to software testing

make it easier for organizations to adopt and scale an efficient software testing

practice across development and testing teams.

ABOUT PARASOFT

Copyright 2019. All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or
registered trademarks of Parasoft Corporation. All other products, services, and companies are trademarks, regis-
tered trademarks, or servicemarks of their respective holders in the US and/or other countries.

www.parasoft.com

Parasoft Headquarters:
+1-626-256-3680

Parasoft EMEA:
+31-70-3922000

Parasoft APAC:
+65-6338-3628

SUMMARY

Coding standards are designed for software developers creating safety and security critical
applications. Although many different standards exist, software teams are encouraged to create a
customized set of rules that best fits their primary needs. Safety critical projects may emphasize a
standard such as MISRA C, but also include critical rules from a security standard such as SEI CERT
C. To accelerate compliance, two elements are essential: short feedback loops for developers
working with IDEs and CI/CD scans for process management and reports generation.

Automation via static analysis is key to not only achieving compliance/conformance to the rule
set but also reducing the manual effort of documenting and reporting compliance to auditors and
assessors. The approach recommend in this paper includes an augmented developer workflow
that leverages Parasoft C/C++test to help assess and monitor compliance on a daily basis, with
dedicated reporting tools to help teams manage and achieve compliance.

https://www.parasoft.com/products/ctest

