
© 2017 Parasoft Corporation

1

WHAT ISO 26262 COVERS 

ISO 26262 is a functional safety standard that covers the entire automotive product development 

process (including such activities as requirements specification, design, implementation, integration, 

verification, validation, and configuration). The standard provides guidance on automotive safety 

lifecycle activities by specifying the following requirements: 

• Functional safety management for automotive applications 

• The concept phase for automotive applications 

• Product development at the system level for automotive applications software 

architectural design 

• Product development at the hardware level for automotive applications software unit 
testing 

• Product development at the software level for automotive applications 

• Production, operation, service and decommissioning 

• Supporting processes: interfaces within distributed developments, safety management 

requirements, change and configuration management, verification, documentation, use 

ISO 26262 Software Compliance with Parasoft:
Achieving Functional Safety in the Automotive Industry

INTRODUCTION

Some modern automobiles have more lines of code than a jet fighter. 

Even moderately sophisticated cars ship with larger and more com-

plex codebases than the same line from just a few years ago. The 

inclusion of multi-featured infotainment systems, driver-assist tech-

nologies, and electronically controlled safety features as standard 

components—even in economy models—have fueled the growth of 

software in the automotive industry. Additionally, the emergence of 

driverless technology and “connected” cars that function as IoT sys-

tems on wheels will mean even larger and more complex codebases. 

 

All of the innovation taking place in the automotive industry, though, 

raises concerns over the safety, security, and reliability of automo-

tive electronic systems. The concerns are appropriate given that the 

automotive software supply chain is a long convoluted system of 

third-party providers spanning several tiers. Consider, for example, 

that software developed for a specific microcontroller unit (MCU) may 

be integrated by a third-tier provider into a component they’re ship-

ping to a second-tier provider and so on—until a composite compo-

nent is delivered for final integration by the automaker. 

While not all automotive software is critical to the safe operation of 

the vehicle, code that carries out functional safety operations must 

be safe, secure, and reliable. Organizations must implement strong 

software quality process controls around the development of safety-

critical software in accordance with ISO 26262, which is a functional 

safety standard for automotive software. ISO 26262 provides guidance 

on processes associated with software development for electrical 

and/or electronic (E/E) systems in automobiles. The standard is aimed 

at reducing risks associated with software for safety functions to a 

tolerable level by providing feasible requirements and processes. 

In this paper, we provide background information on ISO 26262 and its goals. We also discuss some of the policy-related issues associated with 

developing embedded software that complies with ISO 26262. Finally, we describe how Parasoft can help automotive software development 

organizations achieve compliance with ISO 26262.

Technical Whitepaper



© 2017 Parasoft Corporation

2

of software tools, qualification of software components, qualification of hardware components, and 

proven-in-use argument

• Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses 

WHAT ISO 26262 DOES NOT COVER 

• Unique E/E systems in special purpose vehicles such as vehicles designed for drivers with disabilities 

• Safety standards for large vehicles, such as those over 3500KB (7700 pounds) gross weight 

• Hazards related to electric shock, fire, smoke, heat, radiation, toxicity, flammability, reactivity, 

corrosion, release of energy and similar hazards, unless directly caused by malfunctioning behavior of 

E/E safety-related systems 

• Nominal performance of E/E systems 

SOFTWARE-SPECIFIC SECTIONS OF ISO 26262 

Part 6 of the standard specifically addresses product development at the software level. Requirements for the 

following development activities are specified: 

• Initialization of product development 

• Specification of software safety requirements 

• Software architectural design 

• Unit design and implementation 

• Unit testing 

• Software integration and testing 

• Verification of software safety requirements. 

Methods defined by the ISO 26262 standard should be selected depending on the ASIL (automotive safety 

integrity level). The higher the ASIL, the more rigorous the methods. 

Part 8, section 11, describes the software tool qualification process. Tools that automate software development 

activities and tasks can significantly help organizations meet ISO 26262 requirements. Software tool qualification 

is intended to provide evidence that the tool(s) is suitable for developing a safety-related item or element. One of 

the qualification methods defined in the ISO 26262 relies on running the development tool on a control codebase 

and making sure that the product is consistent and accurate. 

Qualifying Parasoft defect prevention tools and technologies involves running static analysis, flow analysis, unit 

tests, and any other testing practice used in your development process on a set of control code. Parasoft will 

consistently, accurately and objectively report errors, which ensures that the tool functions properly.

ISO 26262 COMPLIANCE AND POLICY-DRIVEN DEVELOPMENT 

A particular feature that makes developing compliant embedded software so challenging is the gap between 

software development and business expectations. Software engineers make business-critical decisions every 

day in the form of their coding practices, quality activities, and engineering processes. As software permeates 

critical functions associated with functional safety, these engineering decisions can lead to significant business 

risks. E/E systems in automobiles that must conform to ISO 26262 are particularly vulnerable to risks because the 

standard specifies very detailed lifecycle processes throughout the approximately 400 pages intended to answer 

a simple, yet ambiguous, question: Is this safe? 



© 2017 Parasoft Corporation

3

Figure 1: Software development lifecycle defined by ISO 26262

The purpose of ISO 26262 is to outline the policy surrounding the processes in Figure 1, but policies specific to the 

organization can be integrated at any step. 

The key to reining in these risks is to align software development activities with your organization’s business 

goals. This can be achieved through policy-driven development, which ensures that engineers deliver software 

according to your expectations. Policy-driven development involves: 

• Clearly defining expectations and documenting them in understandable polices 

• Training the engineers on the business objectives driving those policies 

• Enforcing the policies in an automated, unobtrusive way 

By adopting a policy-driven strategy, businesses are able to accurate and objectively measure productivity and 

application quality, which lowers development costs and reduces risk. 

FSRs are converted to TSRs.

Each event is given an ASIL 

(automotive safety integrity 

level) and assigned a 

safety goal. 

Item definitions are the basis 

of hazard analyses, which 

result in a list of 

hazardous events. 

Item
Definition

Hazard
Analysis

Hazardous
Event

ASIL
Determined

Safety Goals
Assigned to
Each Event

Safety Goals 
Inherit Event

ASILs
Analysis

Functional
Safety

Requirements

Technical
Safety

Requirements

Each TSR is
Implemented 
by a Software

Safety
Requirement

Item definitions that include 

assumptions, dependencies, 

and a preliminary architecture 

are written.

All steps output work products. 
Work products comprise a safety case. 
Additional arguments accompany the 
safety case to answer the question of safety.



© 2017 Parasoft Corporation

4

With public safety, potential litigation, market position and other consequences on the line, it behooves software 

development teams and people in the traditional business management positions to come together on policy and 

implement the strategy into their software development lifecycle. Visit www.parasoft.com for more information 

about policy-driven development. 

PARASOFT SUPPORT FOR ISO 26262 

Parasoft DTP facilitates the software quality tasks specified in ISO 26262, including static analysis, data flow 

static analysis, metrics analysis, peer code review, unit testing and runtime error detection. This provides teams 

a practical way to prevent, expose, and correct errors in automotive functional safety systems. DTP collects data 

generated by software engineering processes, such as static code analysis violations, test results, code metrics, 

coverage analysis, source control check-ins, defect tracking systems, etc., and generates meaningful views of the 

correlated and prioritized data. 

The real power of DTP is the Parasoft Process Intelligence Engine (PIE), which performs an additional post analysis 

on the development artifacts collected in order to pinpoint risk in the code while highlighting opportunities for 

improving the your development processes. DTP reports the problematic code and a description of how to fix it to 

the engineer’s IDE based on the organization’s programming policy. 

The specific sections of the ISO 26262, part 6: Product development: software level that can be addressed or 

partially addressed with Parasoft are described below. The information presented here is intended to serve as 

an introduction to ISO 26262 software verification and validation processes with Parasoft. Please refer to the 

standard and consult functional safety experts for clarification of any requirements defined by the ISO 26262 

standard. 

INITIALIZATION OF PRODUCT DEVELOPMENT AT THE SOFTWARE LEVEL 

This section of the ISO 26262 – part 6 standard defines general information about the process of software 

development and validation. 

5.4.6 Requirements for achieving correctness of software design and implementation. Methods described here apply to both 

modeling and programming languages.

REQUIREMENT PARASOFT CAPABILITY

Enforcement of low complexity
• Reports cyclomatic complexity, essential complexity, Halsted 

complexity, and other code metrics

Use of language subsets
• Coding standards enforcement, e.g., detection of unsafe 

language constructions

Enforcement of strong typing • Implicit conversions detection

Use of defensive implementation techniques

• Enforces defensive programming against appropriate coding 

standards rules, e.g., checking the return value of malloc, 

checking the error code value returned by called functions, 

etc.

Use of established design principles
• Enforcement of industry coding standards rule sets, e.g. 

MISRA C/C++, JSF, HIS source code metrics, etc.



© 2017 Parasoft Corporation

5

Use of unambiguous graphical representation • Enforcement of specific formatting conventions

Use of style guides • Enforcement of specific coding conventions

Use of naming conventions • Enforcement of specific naming conventions

SOFTWARE UNIT DESIGN AND IMPLEMENTATION

This section defines the process of specifying and implementing software units, as well as the verification of the 

design and implementation.

8.4.4 Specifies the design principles for software unit design and implementation.

REQUIREMENT PARASOFT CAPABILITY

Design principles for software unit implementation, e.g. 

Initialization of variables, No implicit type conversions, etc.

Static analysis:

• MISRA C rules

• MISRA C++ rules

• MISRA C 2012

• MISRA 2004

• Additional standards

Please refer to the Satisfying ASIL Requirements with Parasoft C/C++test paper for additional information about C/C++test support for specific 
software unit implementation design principles.

8.4.5 Specifies the verification methods for checking software unit design and implementation.

REQUIREMENT PARASOFT CAPABILITY

Control flow analysis • Control Flow Analysis

Data flow analysis • Data Flow Analysis

Static code analysis • Coding standards enforcement

Inspection of the source code • DTP Change Explorer

Walkthrough of the source code • DTP Change Explorer

https://www.parasoft.com/wp-content/uploads/pdf/asil_automotive.pdf


© 2017 Parasoft Corporation

6

9.4.1 Describes general information about unit test execution.

REQUIREMENT PARASOFT CAPABILITY

Unit test execution
• Unit test execution module

• Reports module for presenting results

Unit test specification

• Configurable unit test generation module creates tests 

according to the defined specification

• Test Case Explorer module presents a list of all defined test 

cases with pass/fail status

9.4.2 Describes methods used to specify and execute unit tests.

REQUIREMENT PARASOFT CAPABILITY

Requirement-based tests
• Bidirectional traceability of test and requirements 

• Requirements testing coverage reports

Unit test specification

• Maps test cases with requirements and/or defects in 

conjunction with the DTP

• Supports user defined test cases created manually and tests 

created with the Test Case Editor

Interface tests
• Uses function stubs and data sources to emulate behavior of 

external components for automatic unit test execution

Fault injection tests

• Enforcing fault conditions using function stubs

• Automatic unit test generation using different set of 

preconditions (e.g., min, max, heuristic values)

Please note that Parasoft allows for packaging test cases into groups to allow easier management of the tests (e.g., execution of the tests from 
a single group only).

9.4.3 Defines methods that should be used to create test cases.

REQUIREMENT PARASOFT CAPABILITY

Analysis of requirements
• Parasoft DTP provides requirements to code and requirements 

to test traceability 

SOFTWARE UNIT TESTING

This section defines the process of planning, defining, and executing software unit testing.



© 2017 Parasoft Corporation

7

Generation and analysis of equivalence classes

• Uses factory functions to prepare sets of input parameter 

values for automated unit test generation

• Uses data sources to efficiently use a wide range of input 

values in tests

Analysis of boundary values

• Automatically-generated test cases (e.g. heuristic values, 

boundary values)

• Employs data sources to use a wide range of input values in 

tests

Error guessing

• Uses the function stubs mechanism to inject fault conditions 

into tested code

• Flow Analysis results can be used to write additional tests

9.4.4 Defines the methods for demonstrating the completeness of the test cases.

REQUIREMENT PARASOFT CAPABILITY

Statement coverage • Code Coverage module

Branch coverage • Code Coverage module

MC/DC (modified condition/decision coverage) • Code Coverage module

Note that ISO 26262 Part 6, Point 9.4.4 states that if instrumented code is used to determine the degree of coverage, it may be necessary to 
show that the instrumentation has no effect on the test results. This is achieved by running the tests on non-instrumented code.

9.4.5 Defines the requirements for the test environment.

REQUIREMENT PARASOFT CAPABILITY

Test environment for unit testing shall correspond as far as 

possible to the target environment

• Unit test execution on both target device and simulator to 

perform tests in different environments (e.g. software-in-the-

loop, processor-in-the-loop, hardware-in-the-loop)

SOFTWARE INTEGRATION AND TESTING

10.4.2 Describes general information about executing software integration tests.

REQUIREMENT PARASOFT CAPABILITY

Integration tests

• Flexible configuration of tested software scope (from single 

function to entire application)

• Multi-metric test coverage analysis



Parasoft helps organizations perfect today’s highly-connected applications by automating time-

consuming testing tasks and providing management with intelligent analytics necessary to focus 

on what matters. Parasoft’s technologies reduce the time, effort, and cost of delivering secure, 

reliable, and compliant software, by integrating static and runtime analysis; unit, functional, 

and API testing; and service virtualization. With developer testing tools, manager reporting/

analytics, and executive dashboarding, Parasoft supports software organizations with the 

innovative tools they need to successfully develop and deploy applications in the embedded, 

enterprise, and IoT markets, all while enabling today’s most strategic development initiatives 

— agile, continuous testing, DevOps, and security.

ABOUT PARASOFT

Copyright 2017. All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or reg-
istered trademarks of Parasoft Corporation. All other products, services, and companies are trademarks, registered 
trademarks, or servicemarks of their respective holders in the US and/or other countries.

www.parasoft.com

Parasoft Headquarters:
+1-626-256-3680

Parasoft EMEA:
+31-70-3922000

Parasoft APAC:
+65-6338-3628

8

10.4.5 Defines methods for demonstrating completeness of integration testing.

REQUIREMENT PARASOFT CAPABILITY

Function Coverage • Code Coverage module

10.4.7 Defines requirements for the integration test environment.

REQUIREMENT PARASOFT CAPABILITY

Test environment for software integration testing shall correspond 

as far as possible to the target environment

• Flexible stub framework

• Service virtualization module is available to thoroughly mimic 

complete system

• Coverage analysis execution on both target device and 

simulator to perform tests in different environments (e.g. 

software-in-the-loop, processor-in-the-loop, hardware-in-the-

loop)

SUMMARY

Developing ISO 26262-compliant software for E/E systems in automobiles is no easy feat. But Parasoft eases the 

burden by offering a broad range of analysis tools and, more importantly, enabling you to automatically monitor 

compliance with your development policy—bridging the gap between development activities and business 

processes. Development teams can also generate configurable test reports that contain a high level of detail, 

which helps facilitate the work required for the software verification process.


