
Using AUTOSAR C++ Coding Guidelines to
Streamline ISO 26262 Compliance

New advanced functionalities being added to modern cars, such
as automated driving or advanced safety systems, have forced a
paradigm shift in automotive software development environments.

The C language, which dominated the automotive space for years, is
no longer sufficient to address the growing complexity of automotive
software architectures. With the requirement of object-oriented
design, C++ is now a natural choice for many automotive teams.

But C++ is a complicated language and requires a lot of effort to
assure predictability, safety, and security. The automotive functional
safety standard, ISO 26262, provides some guidance on the software
development and V&V processes, but it does not go in depth at the
level of language constructs. To get such guidance, organizations turn
to coding standards like MISRA C/C++ or AUTOSAR C++. In this paper,
we explain how to comply with ISO 26262 by using a static analysis
tool that’s configured with AUTOSAR C++ 14 compliance checkers.

Technical Whitepaper

ISO 26262 ROAD VEHICLES
FUNCTIONAL SAFETY

ISO 26262 is a functional safety standard for
road vehicles. The standard focuses on electrical
and/or electronic systems in production cars.
ISO 26262 addresses the functional-safety
related aspects of development activities and
work products, defining functional-safety as “the
absence of unreasonable risk due to hazards
caused by malfunctioning behavior of electrical
or electronic systems.”

ISO 26262 consists of ten parts that address
different aspects of the product development
process, including requirements specification,
design, implementation, integration, verification,
validation, and configuration. Part 6 of the
standard focuses on product development
at the software level, including methods
and requirements needed for the software
development and testing processes, that must
be followed to achieve compliance.

AUTOSAR C++ 14 CODING GUIDELINES

The AUTOSAR C++ 14 coding standard is a
part of Adaptive AUTOSAR, which is a platform
for developing automotive control units. The
platform is developed by a consortium of
automotive companies (including all main
players) and provides the specification of
interfaces for services and APIs. There are
commercial implementations of the AUTOSAR
platform provided by a few different vendors that
can be used for developing automotive systems.

The Adaptive AUTOSAR specification was
designed with the C++ 14 language, and includes
a coding standard that restricts the usage of
C++ 14 to the constructs that are predictable
and that don’t lead to unnecessary risk. The
coding standard contains more than 300 coding
guidelines grouped into different categories.
Static analysis tools can help to enforce
compliance with the coding guidelines. Parasoft
has embraced the evolving standard and is
leading the market with its C/C++test product,
implementing more rules and simplifying the
process of creating necessary compliance
documents.

AUTOSAR C++14 was created as an update to
the MISRA C++ 2008 coding standard, which is
was outdated. In January 2019, the MISRA and
AUTOSAR consortiums announced a merger
of their two most popular coding standards for
safety critical C++ and declared development
and maintenance of the standard.

© 2019 Parasoft Corporation

2

HOW TO ACHIEVE COMPLIANCE WITH ISO 26262

Compliance with a functional safety standard like ISO 26262 requires significant effort and needs
to be an integrated part of the project from the very beginning. Even in the case of the software
components, compliance requires specific activities during requirements gathering, planning,
and implementation and it is definitely not something that can be “added later.”

ISO 26262 specifies a collection of methods that are required to achieve compliance with the
standard. To claim compliance, users must provide evidence that all applicable requirements and
methods have been implemented. For example, in Part 6, you can find recommendations that
refer to the software development process. The methods are grouped in the tables, see example
below:

Not all methods apply to everyone. Applicability of the method depends on the Automotive Safety
Integrity Level (ASIL), which is a risk classification defined in the standard (ASIL A represents the
lowest degree and ASIL D represents the highest degree of automotive hazard). The method can
be highly recommended (++), recommended (+), or neutral (o).

The challenge that teams are typically facing when trying to comply with the standard is how
to implement the methods that are recommended for their processes. The decision on how to
comply with the specific method or requirement is frequently based on the team experience. In
some simple situations, manual procedures and reviews can be an answer, but in most cases,
teams are trying to find tools that can automate required methods.

A tool that is used to comply with ISO26262 has to be approved for the intended use through
the formal process called tool qualification. The objective of the qualification of software tools is
to provide evidence of software tool suitability, for use when developing a safety-related item or
element. This can be a time and resource consuming task. Parasoft C/C++test is supported with
an automated qualification kit that streamlines the qualification process and includes a TÜV SÜD
certification that in many situations is sufficient for tool qualification.

HOW DOES THE AUTOSAR C++ CODING STANDARD STREAMLINE COMPLIANCE
WITH ISO 26262?

Following a coding standard like AUTOSAR C++ is a widely accepted method for satisfying some
of the requirements stemming from ISO 26262. AUTOSAR C++ 14 provides the traceability tables
that map ISO 26262 principles and recommendations to the appropriate coding guidelines. The
mapping covers mainly section 8 of Part 6 of ISO 26262, and highly simplifies the process of
achieving compliance with corresponding methods and requirements from the standard. See
below for an example of the table from the AUTOSAR C++ 14 standard (expanded to show Parasoft
C/C++test support):

© 2019 Parasoft Corporation

3

Table B.6: The criteria that shall be considered when selecting a suitable modeling or
programming language

ISO 26262
Requirement

Relation Type Related
Rule

Comment C/C++test
Support

1a Enforcement of
low complexity

6 - Implemented A1-4-1 Required on code metrics.
Plenty of AUTOSAR C++14
Coding Guidelines rules
forbid constructs that
introduce unnecessary
complexity and are error-
prone, e.g. A9-6-2, M10-2-
1, A10-2-1.

Supported

1b Use of
language
subsets

6 - Implemented 3.1 Plenty of AUTOSAR
C++14 Coding Guidelines
rules forbid constructs
that are allowed from
the C++ language
perspective, but (1) lead
to unstructured designs,
(2) are misleading for
a developer, (3) are
implementation defined.
In case some features are
to be used in a particular
project nonetheless, see
chapter 5.4.

Supported

1c Enforcing of
strong typing

6 - Implemented M5-2-2,
M5-2-3,
A5-2-2,
A5-2-3,
M5-2-6,
A5-2-4,
M5-2-9,
A8-4-14,
A7-2-3

Restrictions on
type casting.
Recommendations on
strongly typed interfaces
and scoped enums

Supported

1d Use of
defensive
implementation
techniques

6 - Implemented A0-4-4,
A4-7-1,
A5-2-5,
A6-5-1,
A14-1-1,
A15-3-4

Error checking required
for math functions,
integer expressions,
array access. Limitations
on iteration statements.
Recommendations on
how to cope with external
code failures

Supported

1e Use of
established
design
principles

6 - Implemented 6.18.5,
A18-5-2,
A0-1-4

Recommendation on
RAII, exception in rules
that facilitate correct
usage of SFINAE and
Concepts. Multiple rules
contain references to
corresponding rules
from multiple standards,
which confirms that the
provided rule set reflects
widely approved coding
techniques.

Supported

© 2019 Parasoft Corporation

4

1f Use of
unambiguous
graphical
representation

8 - Not applicable Recommendations on
graphical representation
is out of scope of
AUTOSAR C++14 Coding
Guidelines.

N/A

1g Use of style
guides

8 - Not applicable AUTOSAR C++14 Coding
Guidelines does not
introduce rules related to
coding style

Supported

1h Use of naming
conventions

8 - Not applicable AUTOSAR C++14 Coding
Guidelines does not
introduce rules related to
naming convention.

Supported

The table above is just one example of the traceability to ISO 26262, touching the specific
table from paragraph 5.4.6 (there are similar mappings for other paragraphs). ISO 26262
traceability tables can be found In the B.6 references section of the AUTOSAR C++ 14
standard that is freely available and can be downloaded here: https://www.autosar.org/
fileadmin/user_upload/standards/adaptive/18-10/AUTOSAR_RS_CPP14Guidelines.pdf

The AUTOSAR C++ 14 coding guidelines alone are not sufficient to achieve compliance with
ISO 26262 for the software component. Some methods in the standard can’t be covered
with the application of AUTOSAR guidelines, such as methods 1g and 1h from the table
above. Method 1g recommends “Use of style guides” and method 1h recommends “Use
of naming conventions.” AUTOSAR C++ 14 does not include any style guides or naming
conventions. Both methods, however, can be easily implemented with Parasoft C/C++test,
which includes more than 3000 static analysis checkers, including code style checkers,
and provides a module for creating a custom static analysis rules.

Methods in the standard that can’t be implement with static analysis in general require
other testing techniques such as fault injection testing.

FINDING THE RIGHT TOOL FOR AUTOSAR C++ 14 COMPLIANCE

Introducing the coding standard compliance process into the team development workflow
is not an easy task. As such, it is very important to select a tool that will help in achieving
compliance without imposing too much overhead and without the requirement for
additional manual procedures. The following points are important decision-making factors
when selecting the solution for static analysis.

1.	 Coverage of the coding guidelines from the standard
AUTOSAR C++ 14 defines a substantial number of the guidelines. The most up-
to-date version of the AUTOSAR coding standard contains at this moment
approximately 400 guidelines, with 350 of these guidelines possible to be enforced
with static analysis. Supporting this number of guidelines is a challenge for static
analysis tool vendors, and not all static analysis tools available on the market cover
the standard sufficiently enough for compliance.
	
Parasoft C/C++test is the leading solution in this case, covering the highest number
of the AUTOSAR C++ guidelines, and continuing to implement more every day. (You
can request the information about current coverage for the AUTOSAR C++ standard
by at Parasoft’s customer portal.)

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/18-10/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/18-10/AUTOSAR_RS_CPP14Guidelines.pdf

From development to QA, Parasoft’s technologies reduce the time, effort, and

cost of delivering secure, reliable, and compliant software, by integrating static

and runtime analysis; unit, functional, and API testing; and service virtualization.

Powerful reporting and analytics help users quickly pinpoint areas of risky code and

understand how new code changes affect their software quality, and groundbreaking

technologies that add artificial intelligence and machine learning to software testing

make it easier for organizations to adopt and scale an efficient software testing

practice across development and testing teams.

ABOUT PARASOFT

Copyright 2019. All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or
registered trademarks of Parasoft Corporation. All other products, services, and companies are trademarks, regis-
tered trademarks, or servicemarks of their respective holders in the US and/or other countries.

www.parasoft.com

Parasoft Headquarters:
+1-626-256-3680

Parasoft EMEA:
+31-70-3922000

Parasoft APAC:
+65-6338-3628

2.	 Support for Data and flow technology
Guidelines defined in the AUTOSAR C++ coding standard have different levels of
complexity. Some are simple guidelines that can be enforced with relatively simple static
analysis technology, like:

But there are also guidelines that require sophisticated data and control flow analysis to
simulate the paths in the analyzed source code and decide if a given guideline is violated
or not. For example, the following guideline:

This guideline cannot be reliably detected without data and control flow analysis. The static
analysis tool you choose has to evaluate the paths in the code to correctly determine if the
index that is used for accessing the data in the container is within the correct range or not.
Many commercial tools and most open-source tools on the market apply very rudimentary
flow analysis to this class of problems, and in effect they either miss an issue in the code
or report an enormous number of false-positives, which consume a huge amount of time
to review, and kill productivity.

When benchmarking a static analysis tool, it is recommended to put special attention on
comparing results for more complex guidelines, which require flow analysis technology.
(You can request an exemplary list of the guidelines that require flow analysis at the
Parasoft customer portal.)

3.	 Support for tool qualification
Although AUTOSAR C++ does not explicitly require tool qualification to approve the static
analysis solution for use, ISO 26262 does. So when planning to use AUTOSAR C++ for
streamlining the compliance with ISO 26262, it is recommended to pick a static analysis
solution that supports end-users with appropriate certificates and a qualification kit.
Parasoft C/C++test is supported with a TÜV SÜD certification, approving it for use when
developing safety-critical software with ISO 26262, and with a qualification kit that can be
used to approve the tool for use in the projects with highest level of risk.

SUMMARY

Following a coding standard like AUTOSAR C++ 14 can help organizations achieve compliance with
ISO 26262, as there are multiple methods and requirements defined in the ISO 26262 standard that
can be satisfied by conforming with the AUTOSAR coding guidelines. AUTOSAR C++ 14 provides
dedicated traceability tables that demonstrate the mapping between ISO 26262 requirements
and the coding guidelines, and teams wishing to streamline their ISO 26262 compliance efforts by
applying AUTOSAR C++ coding guidelines need to be well informed when they select the static
analysis tools for use. Of utmost importance to the success of compliance, the static analysis tool
should provide: high coverage of the guidelines in the static analysis checkers, advanced flow
analysis technology, and support for the end-user in the tool qualification process.

