

Power auf Knopfdruck. Kompaktantrieb mit integrierter Positioniersteuerung.

Erklärung der Terminologie maxon IDX Antriebe

Massbilder

Darstellung der Ansichten gemäss Projektionsmethode E (ISO). Alle Abmessungen in [mm].

Die Werte wurden in Verbindung mit Sinuskommutierung und einem Antrieb ohne zusätzliche Anbauten. wie Bremse oder Getriebe, ermittelt, Zusätzliche Anbauten können die Leistungsdaten des Systems ver-

Nominale Versorgungsspannung U_M [Volt] ist die Versorgungsspannung bei welcher die Nenndaten des Antriebs erreicht werden. Die Nenndaten (Zeile 2-7) beziehen sich auf diese Spannung. Die Versorgungsspannung darf im Bereich der Nenn-Betriebsspannung (Zeile 12) variieren.

Nenndrehzahl n₀ [min⁻¹]

ist die Drehzahl, bei welcher der Antrieb spezifiziert wird. Die integrierte Motorsteuerung kann bis zum Nennmoment auf diese Drehzahl regeln.

3 Nennmoment bei 25°C (max. Dauerdrehmoment) [mNm]

Nennmoment bei 40°C (max. Dauerdrehmoment) [mNm]

ist das Drehmoment, das bei Betrieb mit nominaler

Versorgungsspannung und Nennspeisestrom bei 25°C/40°C erzeugt wird. Es liegt an der Grenze des Dauerbetriebsbereichs des Antriebs. Um eine unzulässige Erwärmung der Wicklung zu verhindern, sind höhere Drehmomente nur kurzzeitig möglich. Die integrierte Motorsteuerung überwacht die Wicklung mit Hilfe eines Temperatursensors.

5 Nennspeisestrom bei 25°C [A] und

Nennspeisestrom bei 40°C [A]

ist der erforderliche Speisestrom um bei nominaler Versorgungsspannung und bei 25°C/40°C das Nennmoment zu erreichen.

Maximaldrehzahl bei nominaler Versorgungsspannung [min-1]

ist die Drehzahl, welche der Antrieb bei der nominalen Versorgungsspannung maximal erreichen kann.

Maximal zulässige Antriebsdrehzahl

 η_{max} [min⁻¹]

ist die Drehzahl, welche der Antrieb maximal erreichen kann. Die maximale Drehzahl kann nur bei genügend hoher Versorgungsspannung erreicht werden. Höhere Drehzahlen sind nicht zulässig.

Maximales Drehmoment (kurzzeitig) M_{max} [mNm]

ist das Drehmoment, welches der Antrieb kurzzeitig abgeben kann. Die Dauer hängt vom Einbau ab und wird von der integrierten Motorsteuerung mit Hilfe von Temperatursensoren überwacht.

Maximaler Versorgungsstrom (kurzzeitig) I_{max} [A]

ist der maximale Strom. Der Versorgungsstrom ist nicht proportional zum Drehmoment, sondern hängt von der Speisespannung und dem Betriebspunkt ab.

Rotorträgheitsmoment J_R [gcm²] ist das Massenträgheitsmoment des Rotors, bezogen auf die Drehachse.

Nenn-Betriebsspannung $+V_{CC}[V]$

zeigt den erlaubten Bereich der Versorgungsspannung gegenüber GND. Ist die anliegende Spannung niedriger als die nominale Versorgungsspannung können Nennmoment und Nenndrehzahl nicht garantiert werden. Wird eine Bremse angebaut, gilt die Versorgungsspannung der Bremse als unteres Limit (siehe Feature Chart).

Hochlaufzeit bis Maximaldrehzahl [ms]

ist die Zeit die benötigt wird um den Rotor im Leerlauf auf die Maximaldrehzahl zu beschleunigen. Diese Zeit gilt nur bei ausreichender Spannungsversorgung, ohne Bremse und ohne Getriebe.

Thermischer Widerstand Gehäuse-Luft R_{th2} [K/W]

und 15

Thermischer Widerstand Wicklung-Gehäuse R_{th1} [K/W]

Charakteristische Werte des thermischen Übergangswiderstandes ohne zusätzliche Wärmeableitung. Zeile 14 und 15 addiert bestimmen die maximale Erwärmung bei gegebener Verlustleistung (Belastung). Bei Antrieben mit Metallflansch kann sich der thermische Widerstand R_{th2} um bis zu 80% verringern, sofern der Antrieb statt an eine Kunststoffplatte direkt an eine Wärme leitende (metallische) Aufnahme angekoppelt wird.

16 Therm. Zeitkonstante der Wicklung τw [s] und

Therm. Zeitkonstante des Antriebs τ_w [s] Sind die typischen Reaktionszeiten für die Temperaturänderung von Wicklung und Antrieb. Man erkennt, dass der Antrieb thermisch viel träger reagiert als die Wicklung. Die Werte sind aus dem Produkt der thermischen Kapazität und den angegebenen Wärmewiderständen gerechnet. Die integrierte Motorsteuerung überwacht die Temperaturen mit Hilfe von Temperatursensoren.

Umgebungstemperatur [°C]

Betriebstemperaturbereich. Er ergibt sich aus der Wärmebeständigkeit der verwendeten Werkstoffe und der Viskosität der Lagerschmierung.

Axialspiel [mm]

Bei nicht vorgespannten Motoren sind dies die Toleranzgrenzen des Lagerspiels. Eine Vorspannung hebt das Axialspiel bis zur angegeben axialen Kraft auf. Bei Belastungen in Richtung der Vorspannkraft (Zug: von Flansch weg) ist das Axialspiel immer Null. In der Längentoleranz der Welle ist das maximale Axialspiel eingerechnet.

Radialspiel [mm]

Das Radialspiel ergibt sich aus der Radialluft der Lager. Eine Vorspannung hebt das Radialspiel bis zur angegebenen axialen Belastung auf.

21/22 Max. axiale Belastung [N]

Dynamisch: Im Betrieb zulässige Axialbelastung. Falls für Zug und Druck unterschiedliche Werte gelten, ist der kleinere Wert angegeben.

Statisch: Maximale axial auf die Welle wirkende Kraft im Stillstand, bei der keine bleibenden Schäden auftreten.

Max. radiale Belastung [N]

Der Wert wird für einen typischen Abstand vom Flanschangegeben. Bei grösserem Abstand reduziert sich dieser Wert.

24 Gewicht des Antriebs [g]

Typischer Geräuschpegel [dBA]

ist der statistische Mittelwert vom Geräuschpegel gemessen nach maxon Standard (10 cm Abstand radial zum Antrieb, Betrieb im Leerlauf bei der angegebenen Drehzahl. Der Antrieb liegt dabei frei auf einer Schaumstoffmatte in der Geräuschmesskammer). Der akustische Geräuschpegel ist von unterschiedlichen Faktoren z. B. Bauteiltoleranzen abhängig und wird stark vom Gesamtsystem beeinflusst, in welchem der Antrieb eingebaut ist. Bei ungünstigem Anbau des Antriebes kann das Geräuschniveau deutlich über dem Geräuschniveau des Antriebs allein liegen. Der akustische Geräuschpegel wird während der Produktqualifikation gemessen und festgelegt. In der Fertigung wird eine Körperschallprüfung nach definierten Grenzwerten durchgeführt. Damit können unzulässige Abweichungen erkannt werden.

maxon IDX Antriebe Übersicht

Aufbau des Antriebs

Die maxon IDX Antriebe bestehen aus einem auf EC-i Technologie basierenden Motor, einem magnetischen Absolut Encoder (Single-turn) und einer EPOS4-Positioniersteuerung mit integrierter feldorientierter Kommutierung (FOC). Das hochwertige Design erfüllt die IP 65 Schutzklasse, einzig die Abgangswelle muss kundenseitig abgedichtet werden. Die integrierten Temperatursensoren auf Wicklung und Steuerung werden direkt im Antrieb ausgewertet und erlauben eine optimale Ausnutzung des Betriebsbereichs.

Funktionalität der Positioniersteuerung

Der IDX Antrieb verfügt über einstellbare digitale und analoge Einund Ausgänge. Diese sind optimal auf die vielfältigen Funktionen und Betriebsarten des Geräteprofils CiA-402 abgestimmt. Neben der intuitiven Software zur Inbetriebnahme stehen Libraries für die schlanke Einbindung in verschiedenste Mastersysteme zur freien Verfügung.

Kommandierung

Die Kommandierung des Antriebs erfolgt wahlweise über EtherCAT oder CANopen. Bei der I/O-Version steht dem Anwender kein Feldbus zur Verfügung, die Kommandierung erfolgt dabei über die I/O's. In diesem Fall werden nur Strom- oder Drehzahlregelung unterstützt (keine Positionsregelung).

Getriebe

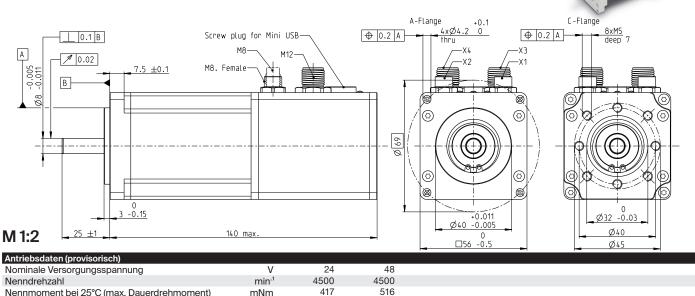
Die eigens für den IDX entwickelten Getriebe ergänzen den Antrieb optimal. Bei der Auslegung der Verzahnung wurde grosser Wert auf Belastbarkeit und Laufruhe gelegt. In der Standardausführung (A) sind die Planeten mit Nadellagern versehen was die Lebensdauer erhöht. Bei der geräusch-reduzierten Variante (LN) ist die erste Getriebestufe schräg verzahnt und komplett aus Stahl. Bei der Ultra-Performance Variante (UP) ist das Getriebe auf höchste Drehmomente optimiert.

Bremse

Optional kann eine Haltebremse zum Antrieb hinzu kombiniert werden, dabei wird die Länge des Antriebs minimalst vergrössert. Es muss beachtet werden, dass sich nebst der Baulänge auch die Leistungsdaten geringfügig ändern. Zusätzlich ändert sich die minimal zulässige Versorgungsspannung und der Betriebstemperaturbereich. Die Bremse ist im stromlosen Zustand aktiv. Es handelt sich um eine Haltebremse, welche sich nicht eignet zum Abbremsen. Die Ansteuerung der Bremse übernimmt die integrierte Steuerung. Die elektrischen Eigenschaften, Massbilder und CAD-Daten des Antriebs mit Bremse sind online verfügbar.

Auslegung des Antriebs

Die maxon IDX Antriebe sind integrierte Systeme, die nicht wie separate Motor-Steuerungs-Kombinationen betrachtet und ausgelegt werden dürfen. Motor und Steuerung sind beim IDX thermisch gekoppelt. Hinzu kommt, dass der Speisestrom und die Speisespannung nicht die jeweiligen Ströme und Spannungen sind, die am Motor anliegen. Aus diesen Gründen werden im Datenblatt keine Kenndaten des Motors wie Drehmomentkonstante oder Drehzahlkonstante angegeben. Solche Werte können bei Bedarf dem Feature Chart entnommen werden. Für die Auslegung in einer Anwendung sollte daher auf das Nenndrehmoment, das maximale Drehmoment (kurzzeitig) und die Nenndrehzahl sowie maximale Antriebsdrehzahl aus dem Datenblatt referenziert werden. Die Angaben zum Nennarbeitspunkt beziehen sich beim IDX auf die Verwendung bis zu einer Höhe von 1000 m.ü.M.


Inbetriebnahme

maxon liefert die IDX Antriebe vorkonfiguriert aus. Motor-, Encoderund Bremsparameter werden werkseitig auf der Positioniersteuerung hinterlegt. Für die Inbetriebnahme beim Kunden stellt maxon über das EPOS-Studio die Auto-Tuning Funktion zur Verfügung. Dadurch verkürzt sich die Installationszeit auf ein Minimum.

Kabel

Der Verkabelungsaufwand für den IDX Antrieb ist sehr gering, da lediglich die Leistungsversorgung, Kommandierungsverkabelung sowie im Bedarfsfall die I/O's angeschlossen werden müssen. maxon bietet im Webshop eine Auswahl an Kabeln an, die eine Inbetriebnahme des Antriebs erleichtern und ab Lager verfügbar sind.

Antriebsdaten (provisorisch)				
1_ Nominale Versorgungsspannung	V	24	48	
2_ Nenndrehzahl	min-1	4500	4500	
3_ Nennmoment bei 25°C (max. Dauerdrehmoment)	mNm	417	516	
4_ Nennmoment bei 40°C (max. Dauerdrehmoment)	mNm	370	458	
5_ Nennspeisestrom bei 25°C	Α	9.8	5.8	
6_ Nennspeisestrom bei 40°C	Α	8.7	5.2	
7_ Maximaldrehzahl bei Nennspannung	min ⁻¹	5105	6000	
8_ Maximal zulässige Antriebsdrehzahl	min-1	6000	6000	
9_ Maximales Drehmoment (kurzzeitig)	mNm	888	1498	
10_ Maximaler Versorgungsstrom (kurzzeitig)	Α	24	24	
11_ Rotorträgheitsmoment des Antrieb	gcm ²	170	170	
12_ Nenn-Betriebsspannung + V _{cc}	V	1248	1248	
13_ Hochlaufzeit bis Maximaldrehzahl	ms	9.8	7.1	

	Thermische Daten		Betriebsbereiche
14_	Therm. Widerstand Gehäuse-Luft	K/W	2.47 n [min ⁻¹] 24-V-System
15_	Therm. Widerstand Wicklung-Gehäuse	K/W	1.16 6000
16_	Therm. Zeitkonstante der Wicklung	S	18.9
17_	Therm. Zeitkonstante des Antriebs	S	1320 ⁵⁰⁰⁰ V _{cc} = 24 V
18_	Umgebungstemperatur	°C	-20+85 ₄₀₀₀
	Mechanische Daten		
19_	Axialspiel	mm	0.14 3000 V _{cc} = 12 V
	Vorspannung	N	21 2000
	Kraftrichtung		Zug ₁₀₀₀
20_	Radialspiel	V	rorgespannt
21_	Max. axiale Belastung (dynamisch)	N	12 ⁰ 0 500 1000 M [mNm]
22_	Max. axiale Aufpresskraft (statisch)	N	150 n [min ⁻¹] 48-V-System
23_	Max. radiale Belastung [mm ab Flansch]	N	110 [5] 6000
			V _{cc} = 48 V
	Weitere Spezifikationen		5000
24_	Gewicht des Antriebs	g	1070 4000
			V = 24 V

	Weitere Spezifikationen			50
24_	Gewicht des Antriebs	g	1070	40
25_	Typischer Geräuschpegel [min-1]	dBA	54 [4000] 4096	0.0
	Encoder: Schritte pro Umdrehung		4096	30
				20

Versorgung*
I/O's*
CANopen Eingang*
CANopen Ausgang*
EtherCAT Eingang*
EtherCAT Ausgang*

M12 Stecker, 5-polig, L-kodiert
M12 Stecker, 12-polig, A-kodiert
M8 Stecker, 5-polig, B-kodiert
M8 Stecker, 5-polig, B-kodiert
M8 Stecker, 4-polig, A-kodiert

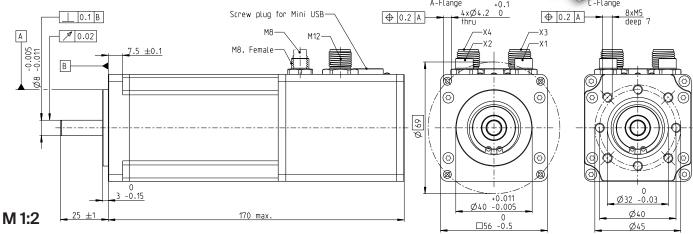
EtherCAT Ausgang* M8 Stecker, 4-polig, A-kodiert GPX 52

*Passende Kabel erhältlich

V_{cc} = 48 V V_{cc} = 24 V V_{cc} = 12 V V_{cc} = 12 V M [mNm]

n gear Stufen [opt.]
2 1–3

Schnittstellen: CANopen / EtherCAT Bremse


Konfiguration

Motorflansch: A-Flansch / C-Flansch

Dauerbetriebsbereich Kurzzeitbetriebsbereich

Antriebsdaten (provisorisch)				
1_ Nominale Versorgungsspannung	V	24	48	
2_ Nenndrehzahl	min-1	2750	3500	
3_ Nennmoment bei 25°C (max. Dauerdrehmoment)	mNm	794	779	
4_ Nennmoment bei 40°C (max. Dauerdrehmoment)	mNm	704	690	
5_ Nennspeisestrom bei 25°C	Α	11.2	6.0	
6_ Nennspeisestrom bei 40°C	Α	10	6.7	
7_ Maximaldrehzahl bei Nennspannung	min-1	3090	4915	
8_ Maximal zulässige Antriebsdrehzahl	min ⁻¹	6000	5000	
9_ Maximales Drehmoment (kurzzeitig)	mNm	1596	1997	
10_ Maximaler Versorgungsstrom (kurzzeitig)	Α	24	24	
11_ Rotorträgheitsmoment des Antrieb	gcm ²	265	265	
12_ Nenn-Betriebsspannung + V _{cc}	V	1248	1248	
13_ Hochlaufzeit bis Maximaldrehzahl	ms	5.4	6.9	

	Thermische Daten			Betri	ebsk	ereiche					
14_	Therm. Widerstand Gehäuse-Luft	K/W	2.01	n [mi	n-1]	24-V-System					
15_	Therm. Widerstand Wicklung-Gehäuse	K/W	0.76		_						
16_	Therm. Zeitkonstante der Wicklung	S	20.1	5000				/			
17_	Therm. Zeitkonstante des Antriebs	s	1450	5000				\			
18_	Umgebungstemperatur	°C	-20+85	4000				\			
	Mechanische Daten			3000			V _{cc} = 24 V				
19_	Axialspiel	mm	0.14					1			
	Vorspannung	N	21	2000			V _{cc} = 12 V	1			
	Kraftrichtung		Zug	1000				\			
20_	Radialspiel		vorgespannt					1	1		
21_	Max. axiale Belastung (dynamisch)	N	12	0 ()	500	1000	M [mNm]	Í		
22_	Max. axiale Aufpresskraft (statisch)	N	150	n [mi	n-1]	48-V-System					
23_	Max. radiale Belastung [mm ab Flansch]	N	110 [5]	6000							
										=	Dauerbetriebsbereich
	Weitere Spezifikationen			5000			V _{cc} = 48	·]	Ш	Kurzzeitbetriebsbereich
24_	Gewicht des Antriebs	g	1445	4000			- cc - 40	•			

	Weitere Spezifikationen		
24_	Gewicht des Antriebs	g	1445
25_	Typischer Geräuschpegel [min-1]	dBA	58 [4000]
	Encoder: Schritte pro Umdrehung		4096

Versorgung* I/O's* CANopen Eingang* CANopen Ausgang* EtherCAT Eingang* EtherCAT Ausgang*

*Passende Kabel erhältlich

M12 Stecker, 5-polig, L-kodiert 1000

M12 Stecker, 12-polig, A-kodiert M8 Stecker, 5-polig, B-kodiert M8 Stecker, 4-polig, A-kodiert maxon gear M8 Stecker, 4-polig, A-kodiert GPX 52

M8 Stecker, 5-polig, B-kodiert maxon Baukastensys Stufen [opt.] 1-3

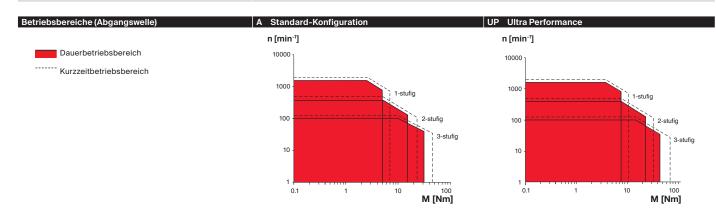
3000 2000

Schnittstellen: CANopen / EtherCAT **Bremse**

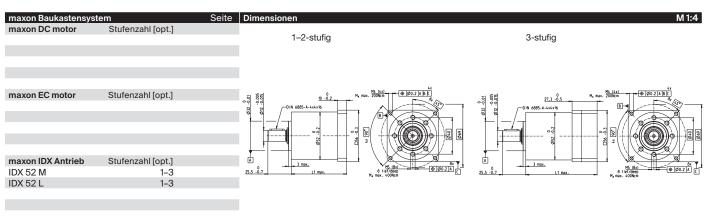
V_{cc} = 12 V

M [mNn

Motorflansch: A-Flansch / C-Flansch


Planetengetriebe Ø52 mm

Konfigurierbar



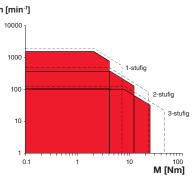
Eckdaten		A Standard-Konfiguration	UP Ultra Performance
Max. übertragbare Leistung	W	400	600
Max. Dauerdrehmoment	Nm	30.0	45.0
Max. Eingangsdrehzahl dauernd	min-1	6000	6000
Umgebungstemperatur	°C	-40+100	-40+100
Abtriebswellenlagerung		Kugellager	Kugellager

Spezifikationen		A Standard	-Konfiguration		UP Ultra Per	formance		
Stufenzahl		1	2	3	1	2	3	
Max. übertragbare Leistung dauernd	W	400	200	100	600	300	150	
Max. übertragbare Leistung kurzzeitig	W	500	250	125	750	375	188	
Max. Drehmoment dauernd	Nm	5.0	15.0	30.0	7.5	22.5	45.0	
Max. Drehmoment kurzzeitig	Nm	7.0	23.0	45.0	10.5	34.5	67.5	
Max. Eingangsdrehzahl dauernd	min ⁻¹	6000	6000	6000	6000	6000	6000	
Max. Eingangsdrehzahl kurzzeitig	min-1	7500	7500	7500	7500	7500	7500	
Max. Wirkungsgrad	%	95.0	92.0	89.0	95	92	89	
Mittleres Getriebespiel unbelastet	۰	0.5	0.6	0.8	0.30	0.40	0.50	
Max. axiale Belastung (dynamisch)	N	200	200	200	200	200	200	
Max. zulässige Radiallast, 10 mm ab Flansch	N	420	630	900	420	630	900	
Getriebelänge L1 ¹	mm	44	61	78	44	61	78	
Gewicht	g	687	855	1080	694	861	1086	

Konfiguration	A Standard	-Konfiguratio	า		UP Ultra Per	formance		
Stufenzahl	1	2	3		1	2	3	
Untersetzung	3.9, 5.3, 6.6		62, 83, 103, 111, 138, 150, 172, 186, 231, 287		3.9, 5.3, 6.6		62, 83, 103, 111, 138, 150, 172, 186, 231, 287	
Bauart	Standard/Ge	eräuschreduz	iert/Ultra Perfo	ormance				
Flansch	Standardflar	nsch						
Welle								

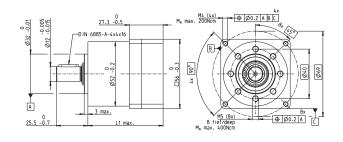
GPX 52

Planetengetriebe Ø52 mm


Konfigurierbar

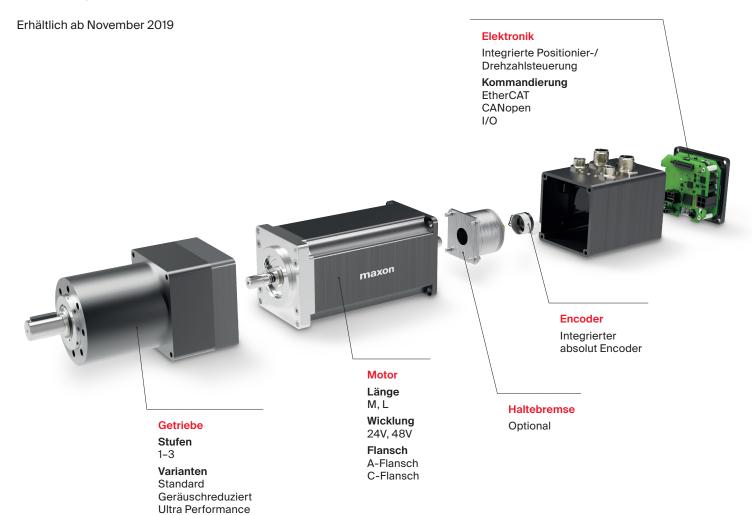
Eckdaten		LN Geräuschreduziert
Max. übertragbare Leistung	W	320
Max. Dauerdrehmoment	Nm	24.0
Max. Eingangsdrehzahl dauernd	min ⁻¹	6000
Umgebungstemperatur	°C	-40+100
Abtriebswellenlagerung		Kugellager
Typischer Geräuschpegel	dBA	-5 dBA gegenüber Standard-Konfiguration

Betriebsbereiche (Abgangswelle) n [min⁻¹]


Dauerbetriebsbereich Kurzzeitbetriebsbereich

Spezifikationen		LN Geräuso	chreduziert		
Stufenzahl		1	2	3	
Max. übertragbare Leistung dauernd	W	320	160	80	
Max. übertragbare Leistung kurzzeitig	W	400	200	100	
Max. Drehmoment dauernd	Nm	4.0	12.0	24.0	
Max. Drehmoment kurzzeitig	Nm	7.0	23.0	45.0	
Max. Eingangsdrehzahl dauernd	min ⁻¹	6000	6000	6000	
Max. Eingangsdrehzahl kurzzeitig	min ⁻¹	7500	7500	7500	
Max. Wirkungsgrad	%	90	83	78	
Mittleres Getriebespiel unbelastet	0	0.50	0.60	0.80	
Max. axiale Belastung (dynamisch)	N	200	200	200	
Max. zulässige Radiallast, 10 mm ab Flansch	N	420	630	900	
Getriebelänge L1 ¹	mm	44	61	78	
Gewicht	g	687	861	1143	

Konfiguration	LN Geräuschred	duziert				
Stufenzahl	1	2	3			
Untersetzung	6.6, 9 28	6, 21, 26, 3, 35, 36, 4, 48, 59	62, 83, 103, 111, 138, 150, 172, 186, 231,254, 287, 315, 392			
Bauart	Standard/Geräus	schreduzio	ert/Ultra Perfo	rmance		
Flansch	Standardflansch	1				
Welle						


maxon Baukastensystem		Seite	Dimensionen
maxon DC motor	Stufenzahl [opt.]		
maxon EC motor	Stufenzahl [opt.]		
maxon EC motor	Stuterizarii [opt.]		
maxon IDX Antrieb	Stufenzahl [opt.]		
IDX 52 M	1–3		
IDX 52 L	1–3		

gpx.maxongroup.com

Der neue IDX 56 mit bis zu 2 Nm (0.8 Nm dauernd)

- Hohes Dauerdrehmoment
- → Hohe Leistungsdichte
- → IP65 geschütztes Design
- → Bereit für Industrie 4.0
- Konfigurierbar

