Aktuell

Plastiktransistoren?

Die gibt es nicht — zumindest noch nicht —, aber Transistoren im Plastikgehäuse, die als ebenso zuverlässig bezeichnet werden wie vergleichbare Versionen im Metallgehäuse (und die außerdem unvergleichlich preisgünstiger im Angebot stehen!), werden bereits in Massenfertigung hergestellt und sollen in naher Zukunft in Mengen von durchschnittlich 1,6 Mill. Einheiten im Monat vom "Band" laufen.

Auf dem europäischen Halbleitermarkt hat sich im Juli dieses Jahres eine bedeutsame Entwicklung angebahnt, die in absehbarer Zeit einen merklichen Einfluß auf die gesamte Preisgestaltung der transistoranwendenden Industrie haben könnte (!). Zu diesem Zeitpunkt begann man in der im März gegründeten deutschen Niederlassung von Texas Instruments in Freising bei München mit voller Produktionskapazität Transistoren der neuen Silect-Reihe zu fertigen. Die Fertigungsprodukte dieser Reihe sind Transistoren im Plastikgehäuse, die nach einer vollkommen neuen Technologie hergestellt werden.

Viele Transistoranwender erinnern sich sicher noch der Ärgernisse, die die seinerzeit als sehr preisgünstig angebotenen Transistoren auf Keramikträgerplatte mit Epoxydharzumhüllung brachten. Wegen der unterschiedlichen Temperaturkoeffizienten von Keramik und Plastik traten im Betrieb, d. h. unter wechselnden Temperaturbeanspruchungen sehr bald Risse auf, die das Gehäuse undicht werden ließen, so daß nach einiger Zeit ein Massensterben solcher Transistoren eintrat.

Verständlicherweise stehen deshalb viele Anwender neuen Transistoren im Plastikgehäuse recht skeptisch gegenüber. Die nach der neuen Technologie aufgebaute Silect-Reihe hat aber mit jenen Versagern nichts mehr gemein. Die Siliziumplättchen werden nämlich mit ihren drei Anschlüssen in einen homogenen Block spezieller Siliziumplastik eingebettet, deren Ausdehnungskoeffizient soweit an den der herausgeführten Anschlußdrähte angeglichen ist, daß auch bei extremen Temperaturänderungen keine Rißbildung auftreten kann. In der Zusammensetzung dieser Siliziumplastik liegt das Geheimnis der neuen Technologie.

Gleiche Zuverlässigkeit wie Metallgehäusetransistoren

Nach Prüfunterlagen der Firma (bisher wurden die Meßergebnisse von 2 Mill. Prüfstunden eines 50 Mill. Stunden umfassenden Prüfprogrammes ausgewertet) läßt sich schon jetzt sagen, daß die

neuen Plastikgehäusetransistoren ebenso zuverlässig sind wie die gleichen Versionen im Metallgehäuse und das bei nur einem Drittel des Preises. Sogar die sehr strengen MIL-Spezifikationen werden bis auf zwei Punkte erfüllt: die obere Temperaturgrenze für Silect-Transistoren liegt bereits (!) bei 175 °C und der Heliumtest verläuft negativ, d. h., die Plastikgehäuse absorbieren Helium.

Diese beiden Punkte dürfen aber für nichtmilitärische Anwendungen ohnehin außer Betracht bleiben.

Rascher Aufbau der Produktion

Erstaunlich ist, in welch kurzer Zeit die nach modernsten Gesichtspunkten eingerichteten Produktionsstätten (Bild 1) der Texas Instruments Deutschland GmbH in Freising aufgebaut wur-

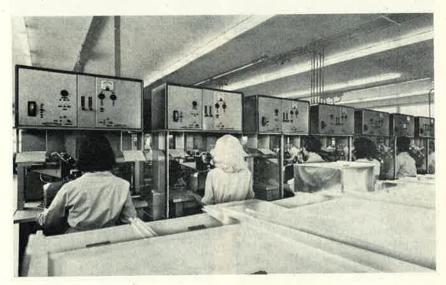


Bild 1: Einige der halbautomatischen Fertigungsstationen, an denen vor dem Vergießen mit Siliziumplastik die Goldanschlußdrähte mit den Siliziumplättchen verbunden werden

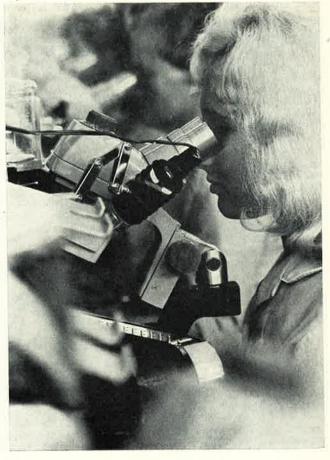


Bild 2: Das Positionieren und Anschließen der Golddrähte an die Siliziumplättchen ist nur unter Mikroskopen möglich

den. Zugunsten eines schnellen Starts der Halbleiterproduktion wurden alle - von Texas Instruments selbst konstruierte und gefertigte - Maschinen eigens von Dallas, Texas per Flugzeug (!) herangeschafft. Die Produktion begann im März dieses Jahres mit Dioden und im Mai mit Silizium-Epitaxie-Planar-Transistoren im Metallgehäuse. Anfang Juli wurde bereits die Fertigung der Silect-Reihe aufgenommen, die z. Z. npn- und pnp-Verstärkertransistoren, Schalttransistoren, Unijunction-Transistoren und Feldeffekttransistoren umfaßt. Noch in diesem Quartal will man mit der Herstellung von Leistungstransistoren be-

Vorläufig werden die fertigen Siliziumplättchen (wafers) noch vom Mutterwerk in Dallas bezogen und in Freising weiterverarbeitet. Sie wandern in handlichen Zwanzigermagazinen von Arbeitsplatz zu Arbeitsplatz, wo sie halbautomatisch montiert werden (Bild 2). Die letzte Station bildet eine Spezialspritzpresse, in der die Halbleiter mit Siliziumplastik umpreßt werden.

Automatisches Prüfverfahren

Nach Vollendung der einzelnen Fertigungsschritte tritt die Elektronik in Aktion. Die in Massenproduktion hergestellten Transistoren müssen geprüft und klassiert werden. Da jeder einzelne Transistor eine solche Prozedur über sich ergehen lassen muß und eine große Anzahl von Parametern zu messen ist, kann das bei so hohen Produktionszah-

Bild 3: Die Silect-Plastiktransistoren werden in Keramikprüfschlitten (Vordergrund) eingesteckt, mit denen sie dann die 54 Prüfstationen und die Klassierabteilung durchlaufen

len nicht mehr von Hand geschehen. Eigens zu diesem Zweck hat Texas Instruments eine elektronenrechnergesteuerte Prüf- und Klassiereinrichtung geschaffen, wie sie in Europa wohl zum ersten Mal eingesetzt wird. Die "Super-CAT" (Continous Automatic Tester), wie sie genannt wird, kann 9000 Einheiten je Stunde prüfen und klassieren. Die Transistoren werden von Hand in Prüfschlitten eingesetzt keramische (Bild 3), durchlaufen von da 54 verschiedene mit Steckkarten programmierte Prüfstationen, wo 46 Parameter bei normaler Zimmertemperatur und 8 bei erhöhter Temperatur gemessen werden. Die Ja/Nein-Aussagen dieser Prüfstationen (ja = innerhalb, nein = außerhalb der vorgegebenen Toleranzgrenzen) werden einem Elektronenrechner zugeführt, der die Transistoren dann automatisch in 24 verschiedene Typen, entsprechend den Kundenwünschen, klassiert. Die verschiedenen Kundenspezifikationen werden vorher in den Elektronenrechner eingelesen und damit die Ja/Nein-Aussagen verglichen. Außerdem nimmt der Elektronenrechner jede Stunde eine automatische Prüfung der zu bestimmenden Parameter vor, damit gewährleistet wird, daß alle 54 Prüfstationen korrekt arbeiten.

Am Rande sei noch vermerkt, daß Texas Instruments Deutschland GmbH bereits im November mit der Fertigung integrierter Schaltkreise der Serie 74 TTL (Transistor Transistor Logic) für industrielle Anwendung beginnen will.

Neuer MP-Kondensator für 100 °C Grenztemperatur mit thermischer Überlastungssicherung

Im Wechselspannungsbetrieb erwärmt sich ein Kondensator infolge der dielektrischen Verluste, so daß er gegenüber seiner Umgebung eine Übertemperatur aufweist. Treten dann bei gedrängtem Einbau noch Wärmestauungen auf, so wird die zulässige obere Grenztemperatur — gemessen an der Gehäuseoberfläche — oft überschritten. Es kommt dann meist zu einem Druckanstieg im Kondensator, der zu einem Aufplatzen des Kondensatorgehäuses führen kann. Das dann auslaufende Imprägniermittel verursacht die verschiedensten Schäden.

SEL ist es durch konstruktive Maßnahmen und durch Verwendung eines besonders temperaturfesten, synthetischen Imprägniermittels gelungen, bei verschiedenen Typen von MP-Kondensatoren die obere Grenztemperatur auf 100 °C heraufzusetzen. Für den Konstrukteur bedeutet dies eine Raumer-

sparnis, denn es ermöglicht ihm durch einen gedrängteren Aufbau den Kondensator dichter zu den anderen Bauteilen zu "packen".

Trotzdem kann es in dem einen oder anderen ungünstig gelagerten Fall (z. B.

MP-Kondensator für 100 °C Grenztemperatur mit thermischer Überlastungssicherung; der linke Kondensator ist intakt, bei dem rechten wurde die Sicherung ausgelöst

Kondensator im Beleuchtungskörper und dazu hohe Raumtemperatur) vorkommen, daß auch eine Temperatur von 100°C noch überschritten wird. Zum Vermeiden von Folgeschäden wurde daher diese Ausführung des MP-Kondensators mit einer Sicherung gegen thermische Überlastung versehen.

Zu solchem Zweck weist das Gehäuse oben Sicken auf, die sich bei einem inneren Druckanstieg — hervorgerufen durch Überschreiten der oberen Temperaturgrenze—wie ein Zieharmonikabalg entfalten, dadurch gleichzeitig einen unter dem Deckel eingebauten Schalter öffnen und den Kondensator außer Funktion setzen. Damit entfällt die weitere Umwandlung dielektrischer Verlustleistung in Wärme, so daß der Druck nicht weiter ansteigen kann. An den ausgefalteten Sicken ist ein abgeschalteter Kondensator leicht zu erkennen und kann sofort ausgewechselt werden.